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Abstract 

The objective of this study was to quantify land use and land cover (LULC) changes and 

predict future urban growth in Katsina-Ala. Three Landsat satellite images TM, ETM+ 

and OLI for 1987, 2007 and 2017 respectively were classified using maximum likelihood 

classifier in Idrisi Selva to detect the land cover changes and a classification accuracy of 

87.18%, 89.32%  and 91.6  for 1987, 2007 and 2017 maps was achieved . The result of the 

classification revealed that between 1987 and 2017, urban area increased by 80.38ha 

(102.17%) at the rate of 3.41%, farmland increased by 88453ha (133.56%) at the rate of 

4.45% per year, forest declined by -4219ha (-5.92%) at the rate of -0.2% and grassland 

declined by 53656ha (-44.54%) at the rate of -1.48%. The study found that  evidence 

likelihood and the distance from rivers. urban areas and elevation were the most 

important factors shaping urban growth in Katsina-Ala. Thereafter, a Multilayer 

Perceptron Markov (MLP-Markov) model was used to model transition potentials of 

various LULC types to predict future changes in 2030. The model had a reliability of 
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85.8% after validation. The results of the prediction show that urban area will increase 

from 5.92% to 6.35% with forest declining from 10.8% to 9.46%. It reveals that Katsina-

Ala will grow at the rate of 0.46%. Analysis of the prediction revealed that the rate of 

urban growth will continue and would certainly threaten forest areas in the area. Katsina-

Ala stands the risk of extreme deforestation if appropriate measures are not taken. 

Keywords: Katsina-Ala, Land use and land cover, Urban growth, Landsat satellite, 

Maximum likelihood classifier, Idrisi Selva, Evidence likelihood, Multilayer Perceptron 

Markov. 

 

1.1 Introduction 

Land use refers to the way in which, and the purposes for which, humans employ the 

land and its resources. Land cover refers to the habitat or vegetation type present, such 

as forest and agriculture area. Land use and land cover (LULC) change also known as 

land change is a term for the human modification of Earth’s terrestrial surface. Land use 

and cover change (LUCC) is one of the central themes of the global change research. 

Rapid world population growth accompanied by economic activities causing urban 

growth and acceleration of urbanization processes has led to rapid LULC changes 

(Yirsaw, et al, 2017; Yuan, et al, 2015). Land use and land cover change has been identified 

as an important driver of environmental change on all spatial and temporal scales 

(Mishra, et al, 2014), as well as emerging as a key environmental issue and on a regional 

scale is one of the major research endeavors in global change studies. These changes 

encompass the greatest environmental concerns of human populations today, including 

climate change, biodiversity loss and the pollution of water, soils and air. LULC change 

studies have resulted in diverse impacts including the extensive modification of Earth’s 

ecosystems. The impact of human activities is becoming more and more visible in the 
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natural environment. One of the most important and obvious areas of concern of these 

activities is LULC change. The key activity in the LULC change projects is to simulate the 

syntheses of knowledge of LULC change processes, and in particular to advance 

understanding of the causes of land cover change. But the most important issue is  

understanding the causes of LULC change. Factors that operate at  the global level seem 

to be the main determinants of land cover change, as they amplify or attenuate local 

factors (Lambin et al., 2001)  Understanding of how land cover change occur is  very 

critical given that these anthropogenic processes can have broad impact on the 

environment (Tayyebi et al., 2010). Still, there is a need of developing regional models for 

case studies to understand LULC change patterns. And this is the reason for this research 

to be undertaken. What is often unsaid, the lack of land cover datasets is a huge problem, 

as they are an essential basis for any LULC change analysis.  

Nowadays there are plenty of models and approaches in LUCC modelling. In the past 

decade researches revealed that many factors are responsible for changes in LUCC 

patterns (Ahmed & Bramley, 2015). Among these factors there are biophysical, economic, 

social, cultural, political or institutional ones. It is impossible to use all of these 

approaches and to take into account every factor, but often more complex and 

interdisciplinary models can have more predicting power.  Monitoring and mediating 

the negative consequences of LULC while sustaining the production of essential 

resources has therefore become a major priority of researchers and policymakers around 

the world. There is no doubt that the modelling of LULC change and environmental 

changes are the subject of increasing importance. A broad range of models has been 

developed for this discipline. There are two fundamental steps in every study of land 

change, i.e. detecting change in the landscape and describing that change to some set of 

causal factors. The last step is crucial for the research quality. A better understanding of 
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LULC patterns will assist planners to properly evaluate complex causes and responses in 

order to better project future trends of human activities and LULC change. In this 

research, it is much needed to estimate the land use changes over the time and predict 

the future scenario of Katsina-Ala. For this study, analysis is performed by a remote 

sensing based Land Change Modeler (LCM) method. Based on past trend from 1987-2007 

of land use changes, the future land use prediction map of Katsina-Ala area for the year 

2030 has been generated.  

 This work presents changes in land cover between 1987and 2017 as well as modelling 

outputs for the study area. This study is  aimed at prediction of land use change in 

Katsina-Ala through a geospatial approach so as to achieve these specific objectives: 

i. Map the types and extent of LULC classes in Katsina-Ala area of Benue State. 

ii. Analyse the trend and rate of LULC changes between 1987 and 2017. 

iii. Identify the drivers and their contributions to urban growth in the area.  

iv. Predict the pattern of urban growth in Katsina-Ala area for 2030  

2.0 Material and Methods  

2.1 Study Area 

Katsina-Ala, created in 1976 is situated within the lower River Benue valley in Central 

Nigeria. Its lies between longitude 9° 15′ and 9° 56′ East and Latitude 6° 55′ and 7° 36′ 

North as shown in Figure 1. Benue has a population of, 225,471 (2006 census) and 

occupies a landmass of 2688.64 square kilometres. (Etim, 2007 and BNSG, 2017). Katsina- 

Ala is the location of one of the oldest schools in Nigeria, Government College Katsina-

Ala , founded in 1914.  
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          Figure 1: Study Area 

The drainage system of the area is influenced by factors such as relief, climate, rock 

structure and human activities in the area. The major drainage feature in the area is the 

River Katsina-Alan which is the major tributary of the River Benue. It takes its source 

from the Cameroonian Mountains. The river is used for transportation purposes, as well 

as for tourism, fishing and irrigated farming (BNSG, 2017). These waters are utilised for 

a wide range of purposes such as irrigation, fishing, source of potable pipe-borne water, 

industrial uses, domestic uses, drinking water for livestock and recreational purposes  

(Uchua, 2011).  

The climate of Katsina-Ala has two different seasons, the rainy (wet) season and the dry 

season (Abah, 2014).The wet season commences in the month of April and lasts till 

October having a break in August, while the dry season starts from November and ends 

in March. The yearly rainfall is between 15cm and 18cm. Temperatures varies between 
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230C-380C for most of the year.. According to the classification by Thornthwaite, the area 

is represented as B3 (Humid climate with seasonal distribution of moisture). The mean 

monthly values of rainfall in the area range from 0.77cm to 22.75cm.  This has brought 

about twoe distinct rainfall periods in the area: the wet period and the dry period. The 

harmattan winds usually brings a cooling effect particularly from November to February 

and it is linked with seasonal dust haze coming from the prevailing dry NE trade winds 

from the Sahara Desert (BNSG, 2017). 

The vegetation of the area is mainly the Guinea savannah with trees and grasses mixed 

together having average height. The guinea savannah has isolated riparian forests along 

the river banks, patches of woodland, scrubs and shrubs in addition to tall grasses(Abah, 

2014). Halima and Edoja, (2016) and Hula, (2014)observed that the vegetation of the area 

in some places was hitherto covered by forest but due to uncontrolled and continuous 

clearing of the vegetation for agricultural activities together with other anthropogenic 

activities such as burning of the bushes, grazing and hunting among others, have to a 

large extent, impacted on the original forests. The original forest vegetation is now 

reduced to secondary forest and savannah vegetation. The grasses grow very tall and are 

coarse when matured. There are pockets of scattered trees that are of economic 

importance and they include mango, shea butter, locust bean, African iron, Isoberlinia, 

cashew, Danielliaoliveri, Gmelina arborea, oil palm, etc. These trees produce products that 

serve as raw material for some small-scale industries. 

Katsina-Ala  is mostly rural, where settlements are dispersed in small homesteads with a 

population density of about 180 persons per km2 who are mostly farmers. Katsina-Ala is  

administrative headquarters of Katsina-Ala LGA (BNSG, 2017). 

The people of the area are mainly farmers. Over 80% of the total population is dependent 

on farming for their living taking advantage of the rich alluvial soils of the Katsina-Ala 

valley. Katsina-Ala  is part of the Sankara chiefdom noted for the production  of yam and 

other agricultural crops such as cassava, rice, soya beans, millet, potatoes, guinea corn, 
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groundnuts, maize and benniseed. and is regarded by many as the 'Food Basket of  

Benue'. (Benue State Government, 2017). 

2.2 Data Requirement and Collection  

The data for this research was derived from primary and secondary sources. The primary 

data consist of first-hand information and comprises personal observation, taking of 

pictures; and taking of location of  points using handheld Global Positioning System 

(GPS). The GPS was also used for ground truthing during image classification. The 

secondary data consists of Satellite Remote Sensing imageries, Digital Elevation Model 

(DEM), Population data, Road network, Rail network, and drainage network 

characteristics. 

The Satellite imageries used included Landsat TM (1987); Landsat ETM+ (2007); and 

Operational Land Imager (OLI) (2017). The Landsat imagery dataset were downloaded 

from the United States Geological Surveys (USGS) using the Earthexplorer platform, 

Global Land Cover Facility (GLCF) and GloVis. Changes in land cover were measured 

using time series of remotely sensed data (Landsat TM, ETM and OLI). Table 1 gives a 

summary of the image characteristics for the dataset used. Dry season images of the three 

data sets were acquired from January to March in order to reduce the effects of clouds 

that are prevalent during the rainy season. Because the images are from the same season 

and comparable climatic conditions, it enhanced the classification as the spectral 

reflection of most features are easily comparable across the different images.  In addition, 

high resolution Google earth images were used to aid in classification.  

The Digital Elevation Model (DEM) data used were the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) DEM for the year 2014, (Table 1). The data 

is a raster data format, having spatial resolution of 30 meters and a scene coverage of 1o 

x 1o (approximately 111 km x 111 km). 
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Table 1: Specifications of Satellite Imageries  

Satellite Path/Row Sensor No of 

Bands 

Bands used Date 

Acquired 

Spatial 

Resolution 

Landsat 188/54,55 

187/55,56 

TM 7 NIR, R, G 

(4,3,2) 

29/01/1987 30m 

Landsat 188/54,55 

187/55,56 

ETM+ 8 NIR, R, G 

(4,3,2) 

21/12/2007 30m 

Landsat 188/54,55 

187/55,56 

OLI 11 NIR, R, G 

(5,4,3) 

16/02/2017 30m 

ASTER 

GDEM*  

- Radiometer 1 - 2011 30m 

TM= Thematic Mapper, ETM+= Enhanced Thematic Mapper Plus, OLI = Operational Land 

Imager:  

 

The data were downloaded using the Earthexplorer online platform from United States 

Geological Surveys (USGS).A subset of the area covering the study area was done. The 

DEM was used for the determination of slope and elevations of points which affect the 

cost of construction. Higher slopes and marshy areas attract higher cost of construction 

as opposed to plain and gentle slopes. 

Other ancillary data used include: 

Population data- were sourced from the National Population Commission. The population 

of the 23 local government areas was mapped to produce the population density of the 

state from which the area was clipped.  

Transportation network- Major roads and rail network were mapped from Google Earth in 

order to have an up-to-date database of the transportation network in the state.  

Drainage network characteristics- The major water bodies in the state (rivers and lakes) were 

mapped from Google Earth to ensure higher accuracy. 

The tools used for carrying out the research were;  
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i. ArcGIS 10.2 used for pre-processing of images and vector data. 

ii. ERDAS Imagine 2014, used for classification and accuracy assessment of 

classification 

iii. Idrisi Selva, used for change detection and modelling.  

iv. Google Earth Image, used for delineation and updating of transportation and 

drainage maps. It was also used in preparing point data files for modelling. 

v. Global Positioning System-This was used for classification and data validation 

2.3 Mapping the types and extent of LULC cover classes in Katsina-Ala 

This objective was achieved by examining Landsat TM of 1987, Landsat ETM+ of 2007 

and Landsat OLI of 2017 images acquired and their subsequent classification. In order to 

map the types and extent of LULC classes, the data were subjected to these processing 

and analytical procedures as shown in Figure 2:   

i) Data Pre-processing The Landsat images  were pre-processed, so that inherent errors and 

formatting that are required for further direct processing of the data will be done. The 

downloaded Landsat images were in separate bands and need to be layer stacked.   

This is a process whereby different bands of an image are joined together to form a single 

multispectral image. These individual bands were then stacked sequentially from 1 to 7 

using ERDAS Imagine 2014. Specifically, the three (3) satellite imageries, Landsat TM 

(1987); Landsat ETM+ (2007); and Landsat OLI (2017) were corrected radiometrically 

through haze removal operations, so that radiometric errors added to data, due to 

atmospheric scattering were corrected, using the ERDAS Imagine 2014 image processing 

software.  

Radiometric correction refers to the elimination of distortions in the degree of 

electromagnetic energy registered by each detector. Focal analysis module in ERDAS 

2014 was used in removing scan lines on images especially the 2007 Landsat image. 

Geometric correction refers to the process of co-registration of the satellite images, so that 

the images could overlap in the best possible way. This function was achieved in IDRISI 
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through the RESAMPLE module. This is very essential due to the fact that some of the 

essential methods are based on the comparison of the two images from different time 

periods, e.g. supervised classification Although most of Landsat images have been 

already georeferenced, images with a lot of cloud cover could have low geometric 

accuracy, and therefore required to be geo-referenced.  

The Digital Elevation Model (DEM) data were used to produce elevation and slope 

characteristics of the area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Figure 2: Flowchart of the Research Methodology 
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ii) Image rectification   

This operation was carried out through clipping of the study area from the scenes. The 

shapefile of Katsina-Ala was used to subset from the larger scenes. This was done 

through the use of the subset method in ERDAS 2014 and the desired shapefile of Katsina-

Ala was used as the Area of Interest (AOI). The choice of this method was based on its 

simplicity of use and its higher accuracy.  

iii) Image enhancement:   

Image enhancement is concerned with the alteration of images to make them more suited 

to the capabilities of human vision. Irrespective of the extent of digital intervention, visual 

interpretation plays a very strong role in all aspects of remote sensing (Eastman, 2012). 

In order to improve visual quality and outlook of an image for easy interpretation, image 

enhancement is necessary. It increases the contrast among different features thereby 

enhancing easy identification of features and subsequent classification.   After the 

enhancement process, band combination operations were performed to select the 

different bands which will enable the classification of a given earth surface feature. The 

major reason for colour composite is to highlight certain brightness values that are 

associated with certain surface features. A band combination of 4,3,2 (for RGB) was used 

for the Landsat TM and ETM images and 5,4,3 for OLI images as this produced superior 

results. It is suitable for urban application and delineating land, water and vegetation 

boundaries.  

iv) Image classification:  

A per-pixel image classification method for ground cover analysis was used through a 

supervised classification algorithm which is a procedure for categorizing spectrally 

similar areas on an image by identifying “training” sites of known targets and then 

generalizing those spectral signatures to other areas of targets that are unknown (Mather 

and Koch, 2011). It is a process of using samples whose identity is known to categorize 

samples whose identity is unknown. A Maximum Likelihood algorithm of supervised 
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classification was adopted because of the author’s familiarity with the terrain. This 

method was chosen because it is easier to accomplish and more so, the large volume of 

images to be interpreted could not warrant the use of visual on-screen interpretations. 

The visual method depends largely on the skill and familiarity of the interpreter and is 

therefore prone to much error if the interpreter is not well experienced. The identification 

of training sites used was based on spontaneous recognition and logical inference both of 

which are products of visual interpretation. Spontaneous recognition refers to the 

capability of the interpreter to recognize objects at a glance such as agricultural plots. In 

logical inference,  the interpreter draws conclusion on the basis of ground control points, 

his professional knowledge and field experience over the years(Congedo and Munafò, 

2012).  

The Maximum Likelihood is one of the most commonly used supervised classifiers, 

which uses the Gaussian threshold stored in each class signature to assign every pixel a 

class (Huang et al., 2009).  Maximum Likelihood classification assumes that the 

probability distributions for the classes follow the normal distribution model(Richards 

and Jia, 2006). The discriminant function, as described by Richards and Jia, (2006), is:  

gi(x) = ln p(ωi) - ½ ln |Σi| - ½ (x − mi )t Σi-1 (x − mi)                                          (1) 

where: ωi = class (where i = 1, . . . M and M is the total number of classes) 

 x = pixel vector in n-dimension where n is the number of bands  

p(ωi) = probability that the correct class is ωi occurs in the image and is assumed the same 

for all classes 

|Σi| = determinant of the covariance matrix of the data in class ωi 

Σi-1 = inverse of the covariance matrix and mi = mean vector  

The Maximum Likelihood method was used, because it is one of the best classification 

methods which assigns pixels to the class with the largest probability to determine class 

membership of a particular pixel. In choosing training sites, colour composite images 

formed by the combination of three individual monochrome images, which highlight 
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certain surfaces, and help photo-interpretation were viewed. Each band is assigned to 

a given colour: Red, Green and Blue (RGB)(NASA, 2011).  A Supervised classification 

of Landsat image data for the three periods (1987, 2007 and 2017) was performed using 

the Maximum Likelihood Classifier to identify and map land use and land cover classes. 

In order to ascertain the areal extent and rate of change in the LULC of Katsina-Ala, the 

following variables were computed.  

Total area (Ta), Changed area (Ca), Change extent (Ce) and Annual rate of change (Cr) 

These variables can be described by the following formula as given by: Yesserie (2009) 

Ca= Ta(t2)-Ta(t1);       (2) 

Ce=Ca/Ta(t1);        (3) 

Where t1 and t2 are the beginning and ending times of the land use and land cover 

studies conducted.  

v) Fieldwork and Ground-truthing 

Fieldwork was done so as to collect geographical data to map land cover and for accuracy 

assessment of the land cover classification. Ground-truth data were also collected on 

spatial features from the study area, such as spatial location, land cover and land use, 

road network with the aid of a GPS. Ground truthing enabled the collection of inference 

data and to increase ones’ knowledge of land cover conditions. It also enables familiarity 

of features as they appear on the satellite image on the computer screen, for verification 

and validation of the interpreted results. The process of identifying and transferring 

ground points onto the screen was done using the GPS. Each LULC class was physically 

identified in the field and the position of the area recorded using GPS which was later 

transferred to the image whereby it was easier to identify the appearance of such land 

uses and land cover on the screen. Inaccessible areas were complimented with the use of 

Google earth images. In summary, both visual interpretation and digital image 

classification methods were employed in data interpretation. 
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Table 2: Classification scheme adopted.  

S/N Class  Description 

1 River/ water 

bodies 

Open water features including lakes, rivers, streams, ponds and 

reservoirs. 

2 Built-up/Urban  

Areas 

Urban and rural built-up including homestead area such as 

residential, commercial, industrial areas, villages, settlements, road 

network, pavements, and man-made structures. 

3 Grassland  Areas dominated by grasses including vegetated sandbars and 

grazing areas/ 

4 Bare surface Fallow land, earth and exposed river sand land in-fillings, 

construction sites, excavation sites, open space and bare soils. 

5 Forest Trees, natural vegetation, mixed forest, gardens, parks and 

playgrounds, grassland, vegetated lands. 

6 Farmlands Areas consisting of cultivated lands used for the production of 

annual crops, perennial woody crops. agricultural lands, and crop 

fields.  

Source: Modified from Anderson et al.(1976) 

vi) Sampling Technique 

The sampling technique adopted in selecting control points for accuracy assessment was 

the stratified random sampling. There are two primary purposes to implement 

stratification in the accuracy assessment: 1) when the strata are of interest for reporting 

results and 2) when there is the need to improve the precision of the accuracy and area 

estimates (Olofssonet al., 2014). It avails one the opportunity of selecting control points 

within the different land use and land cover classes (strata) to be used for accuracy 

assessment. Each of the land use and land cover classes had control points proportional 

to the size of the area covered.  

vii) Accuracy Assessment  

The accuracy of satellite image classification could be inhibited by the resolution of 

images used and dearth of fine details as well as unavoidable generalization impact and 
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therefore, errors are always expected. This is why, to ensure wise utilization of the 

produced LULC maps and their associated statistical results, the errors and accuracy of 

the analysed outputs should be quantitatively explained (Siddhartho, 2013). Accuracy 

assessment is a process whereby the final product of classification is compared with 

ground truth or reliable sources so as to assess the extent of agreement or disagreement. 

This study adopted the Error Matrix approach as used by Friehatet al, (2015) to assess the 

accuracy of the classification.  

Accuracy assessments of the classified maps (1987, 2007 and 2017) were done using the 

error matrix (ERRMAT in Idrisi Selva). The error matrix assesses accuracy using four 

parameters which include overall accuracy, user's accuracy, producer's accuracy and the 

Kappa Index of agreement (KIA). The overall accuracy specifies the total pixels correctly 

classified and is derived by dividing the total number of pixels correctly classified by the 

total number of pixels in the error matrix. The producer’s accuracy defines the probability 

of a reference pixel being correctly classified. It represents the error of omission. The 

number of samples correctly classified for a given column is divided by the total for that 

column (Pedro, 2015). The user's accuracy on the other hand defines the probability that 

a pixel classified on a map actually represents that category on the ground. User’s 

accuracy represents the error of commission. This can be calculated by dividing the 

number of samples correctly classified for a given row by the total of the row (Pedro, 

2015).  On the other, the Kappa index measures the agreement between classification map 

and reference data (Congalton and Green, 2008). All accuracy parameters have index 

values between 0 and 1, where 0 symbolizes poor and 1, strong classification 

accuracy/agreement.  

The Kappa statistics formula developed by Cohen Kappa in 1960 and modified by Jenness 

and Wynne (2007) was adopted for calculating Kappa statistic. It has the advantage of 

correcting for chance agreements between the observed and predicted values. 
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𝑘 =  
𝑁 ∑ 𝑚𝑖,𝑖−∑ (𝐺𝑖𝐶𝑖)𝑛

𝑖=1
𝑛
𝑖=1

𝑁2−∑ (𝐺𝑖𝐶𝑖)𝑛
𝑖=1

    (4) 

Where :i is the class number 

N is the total number of classified pixels that are being compared to ground truth 

mi,i is the number of pixels belonging to the ground truth class i, that have also been 

classified with a class i (that is, values found along the diagonal of the confusion matrix) 

Ci is the total number of classified pixels belonging to class i 

Gi is the total number of ground truth pixels belonging to i 

Kappa value changes from -1 to +1 and the interpretation of the values can be determined 

according to these values:  

< 0: Less than chance agreement  

0.01–0.20: Slight agreement  

0.21– 0.40:  Fair agreement  

0.41–0.60: Moderate agreement  

0.61–0.80:  Substantial agreement  

0.81–0.99: Almost perfect agreement. (Borana and Yadav, 2017). 

A simpler method of determining Kappa in an error matrix with number of rows and 

columns is given by Siddhartho (2013): 

K = (NA - B) / (N2 - B)       (5) 

Where, N = total number of observations included in the error matrix 

A = the sum of correct classifications contained in the diagonal elements 

B = the sum of the products of row total and column total for each LULC type in the error 

matrix 

Simply put: 

Ǩ = Observed Accuracy ─ Chance Agreement  

                  1 ─ Chance Agreement       (6) 



 JOURNAL OF AGRICULTURE AND SUSTAINABILITY 

 17 

Under ideal conditions, the accuracy of the classification ought to be assessed by 

overlaying an already existing LULC map. Due to absence of already existing LULC 

classification for Katsina-Ala, handheld Garmin GPS receiver was used to take 

coordinates of selected LULC as ground control points from the field complimented with 

Google Earth images. The points of these reference data were determined through 

stratified random sampling by identifying and locating the land use classes of interest in 

the field and their GPS points and coordinates taken at ±3m accuracy and recorded as 

was used by Appiah (2016). 

2.4 Analysis of the trend of land use and land cover changes from 1987- 2017 

The methodology for achieving this objective was through the use of Change Analysis 

Tab in IDRISI. Here, the focus was on the spatial trend of change panel to directly detect 

the actual spatial pattern of each major land conversion that has taken place in Katsina-

Ala from 1987-2007, 2007-2017 and1987-2017. The principle under which this panel works 

is the polynomial order in which the spatial pattern and trend of land use and land cover 

between two periods is generalized. According to Eastman (2012), the spatial trend of 

change panel in LCM is to follow a similar pattern on Trend Surface Analysis (TSA) as in 

the TREND module in IDRISI. It calculates trend surface polynomial equations up to the 

9th order for spatial data sets, and then interpolates the surfaces based on those equations. 

The generic equation for the polynomials fitted by TREND as given by(Saifullah, Barus, 

& Rustiadi, 2017) is: 

  Z = ∑ ∑ 𝑏i
j=0

k

i=0
ij Xi-j yj     (7) 

Where k = is the maximum order to be fitted; 

b = coefficient of the polynomial equation; 

both iand j are iteration variables associated with k, in which i = 0,…k and j = 0,…i. 

(Saifullah et al., 2017) 
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2.4.1  Establishing the rate of rural-urban land conversion in Katsina-Ala  

This section is also part of objective two of the study. After a successful classification, the 

LULC classes for 1987, 2007 and 2017 were compared to determine the extent of change. 

The extent of change was divided by the time interval between the initial and the later 

date to arrive at the rate of rural- urban conversion. This operation is represented by the 

following equation as given by Yesserie (2009): 

Cr = Ce/(t2-t1);         (8) 

Where Ce = Change extent 

t1 and t2 = the starting and ending times respectively of the LULC studies conducted 

3.0  Results and Discussion 

3.1 Classification of Land use and land cover for 1976, 2007 and 2017 

The results of classification for the land use  land cover changes in 1987, 2007 and 2017 

are presented using tables, charts and figures for illustration and interpretation of all 

LULC classes in the three periods. The results are discussed immediately as they are 

presented. 

3.1.2 Extent of land use and land cover types in Katsina-Ala 

An analysis of the classification of land use and land cover classes revealed that urban 

area has been on a steady increase from 7867ha (2.93%) in 1987 to 10381ha (3.86%) in 2007 

and rising sharply to 15905ha (5.92%) in 2017. This huge increase in urban area may be 

due to migration from rural areas to urban areas in search of job opportunities and better 

standard of living which has increased demand for urban residential settlements.  Forest 

land on the other hand has been on the decline during the same period from71200ha 

(26.40%) to 66401ha and then decreasing sharply to 29026ha (10.8%) in the three periods. 
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The decrease in forest land is due to the pressure from farming activities and increase in 

settlements as evidenced by their increase in the same period under review. Farmland 

too has been increasing from 66226ha (24.63%) to 106926ha (39.77%) and sharply to 

154679ha (57.58) in 2017. Bare surface and water body each accounted for less than 1% of 

the  land cover and showed no significant changes. This can be seen in Table 3 and Figures  

3, 4, 5. 

 

 

Figure 3: Land use and Land cover map of Katsina-Ala for 1987 

Source: Author’s fieldwork, 2018 
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Figure 4: Land use and Land cover map of Katsina-Ala for 2007 

Source: Author’s fieldwork, 2018 

 

Figure 5: Land use and Land cover map of Katsina-Ala for 2017 

Source: Author’s fieldwork, 2018 
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Table 3: Area Statistics of LULC in Katsina-Ala (1987, 2007 and 2017) 

 Land cover 

Class 

1987 2007 2017 

Area 

 (Ha) 

Area 

(%) 

Area  

(Ha) 

Area 

(%) Area (Ha) 

Area 

(%) 

Water Body  2402 0.89 3256 1.21 1323 0.49 

Urban Area 7867 2.93 10381 3.86 15905 5.92 

Grassland 120480 44.81 81295 30.24 66824 24.87 

Bare Surface 673 0.25 605 0.22 896 0.34 

Forest 71216 26.49 66401 24.70 29026 10.80 

Farmland 66226 24.63 106926 39.77 154679 57.58 

Total Area 268864 100 268864 100 268864 100 

             Source: Author’s fieldwork, 2018 

3.1.3: Accuracy Assessment of Classified Maps 

It is difficult to attain a 100% accuracy in any classification and as such there exist some 

standards to which each classification must attain for it to be acceptable. The accuracy of 

satellite image classification could be controlled by the resolution of images used and lack 

of fine details as well as the impact of unavoidable generalization and therefore, errors 

are always expected. This is why, to ensure prudent utilization of the produced LULC 

maps and their associated statistical results, the errors and accuracy of the analysed 

outputs should be quantitatively evaluated. . 

3.1.4: Assessment of classification accuracy of LULC in Katsina-Ala 

The result of classification accuracy for 1987, 2007 and 2017 for Katsina-Ala showed an 

overall accuracy of 87.18%, 89.32% and 91.6% respectively (see Table 4). Based on the 

scale of assessment, the overall accuracy was considered a good one and, therefore, 

usable for change detection analysis. The user’s accuracy for the different classes ranged 

between 73.08% and 96.61% and the producer’s accuracy ranged between 81.82 % and 

95.16%. The results of overall kappa for the three periods 1987, 2007 and 2017 revealed 

Kappa statistics of 0.84, 0.87 and 0.90 respectively. 
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Table 4: Accuracy assessment result of LULC classification in Katsina-Ala 

LULC 

Class 

1987 classification 2007 classification 2017 classification 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Water 

Body 

 

81.82 75 

 

83.33 95.24 

 

87.5 95.45 

Urban 

Area 

 

86.11 88.57 

 

90.62 87.88 

 

91.67 94.29 

 

Grassland 

 

87.93 91.07 

 

90.48 96.61 

 

91.23 96.3 

Bare 

Surface 

 

86.36 73.08 

 

86.96 76.92 

 

88.89 80 

 

Forest 

 

90 92.31 

 

89.13 87.23 

 

90.57 94.12 

 

Farmland 

 

87.5 90.74 

 

91.21 87.5 

 

95.16 86.76 

Overall 

Accuracy 

      87.18% 89.32% 91.6% 

Overall 

Kappa 

0.84 0.87 

 

0.90 

Source: Author’s fieldwork, 2018 

The Kappa coefficient for the three periods showed that the kappa agreement was 

virtually in perfect agreement implying that it can be used. 

3.1.5: Trend and rate of change in LULC in Katsina-Ala (1987, 2007 and 2017) 

Land use and land cover trend in Katsina-Ala is presented in Table 5 and Figure 6. The 

trend reveals that urban area continued to expand throughout the period. In the first 

period, it increased by 2514ha (31.96%) at the rate of 1.6%. By the second period, it 

increased by 5524ha (53.21%) at the rate of 5.32%. The overall trend shows that urban area 

increased by 80.38ha (102.17%) at the rate of 3.41%.This indicates that the urban area in 
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Katsina-Ala is not expanding at a very fast rate as other towns. This results collaborates 

with that of Hashem and Balakrishnan, 2015 in the modelling of urban growth in Greater 

Doha, Qatar. As with other areas, forest in Katsina-Ala has been on the decline over the 

years. In the first period, -4815ha (-6.76%) was lost at the rate of -0.34% per year while 

37375ha (-56.29%) was lost in the second period at the rate of -5.63% per year. 

 

 

 

 

 

 

 

 

 

 Figure 6: Trend of Land cover changes in Katsina-Ala (1987-2017) 

 Source: Author’s fieldwork, 2018 

 

The overall trend shows that forest declined by -4219ha (-5.92%) at the rate of -0.2%. The 

decline in forest area was mostly due to expansion in farmlands. Farmland has been on 

the increase over the entire period. It increased by 407ha (61.46%) at the rate of 3.07% 

during the first period and 47753ha (44.66%) at 4.47% rate per year during the second 

period. The trend over the entire period shows an increase of 88453ha (133.56%) at the 

rate of 4.45% per year. The rate of expansion of farmland is very high in this region owing 

to the fact that the inhabitants are largely agrarian and the area forms one of the core 

areas agricultural base in Benue State. As farmland increases, grassland decreases. In the 

first period, grassland lost -39185ha (-32.52%) at the rate of -1.63% increasing to -14471ha 

(-17.8%) at the rate of -1.78% in the second period. The overall trend shows that 53656ha 
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(-44.54%) was lost at the rate of -1.48%. This massive loss was largely due to expansion of 

agricultural land. 

Table 5: Annual Rate of change for Katsina-Ala (1987, 2007 and 2017) 

Source: Author’s fieldwork, 2018 

3.2: Land change analysis using Land Change Modeler (LCM) 

The  land cover transition in Katsina-Ala (Figure 7a, b and c) show that all the  land cover 

classes underwent changes. Farmland and urban area maintained a positive change 

throughout the period. Grassland was positive only during the first period but was 

negative in the second and overall periods. Forest land declined throughout the period 

but was highest in the first period. Urban area gained more from bare surface in the first 

period but was overtaken by grassland in the other periods. Farmland and forest were 

the other major contributors. Farmland, grassland and forest were responsible for 

declining forest in the area. From the analysis of the pattern, trend and rate of land use 

and land cover transition in Benue State and the selected urban areas, it is clear that these  

land cover classes are not static in nature. Urban areas are continually on the increase in 

size by taking up lands previously occupied by farmland, grassland and forest. Forest 

land had been lost due to human activities such as farming and urban settlement. In other 
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ANNUAL RATE OF 

CHANGE 

1987-

2007 

(%) 

2007-

2017 

(%) 

1987-

2017 

(%) 

Water Body 854 35.55 -1933 -59.37 -1079 -44.92 1.78 -5.94 -1.5 

Urban Area 2514 31.96 5524 53.21 8038 102.17 1.6 5.32 3.41 

Grassland -39185 -32.52 -14471 -17.8 -53656 -44.54 -1.63 -1.78 -1.48 

Bare Surface -68 -10.1 291 48.1 223 33.14 -0.51 4.81 1.1 

Forest -4815 -6.76 -37375 -56.29 -4219 -5.92 -0.34 -5.63 -0.2 

Farmland 40700 61.46 47753 44.66 88453 133.56 3.07 4.47 4.45 
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areas, the forests were cleared giving way for takeover by grassland. This is clearly 

evident in the contribution to net change in urban areas and forest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Gains/losses of LULC classes, contribution to net change in Urban area and 

Forest (ha) in Katsina-Ala from (a):1987 – 2007, (b): 2007 -2017 and (c): 1987- 2017. 

Source: Author’s fieldwork, 2018 

3.3: Identification of driving factors and their contribution to urban growth  

In order to test the potential power of the drivers (explanatory variables), the LCM’s Test 

and election of site and driver variable module was used. These set of explanatory 

variables were chosen based on preliminary investigations as well as reviews from 

relevant academic literatures. Table 6 shows the Cramer’s V coefficient for each of the 

explanatory variables, As can be seen from the table,  all the variables namely, likelihood 

of transition, distance from urban areas, roads, rivers, railways, digital elevation model 

(DEM), slope and population density selected for transition development were greater 

than 0.15, some of them were higher than 0.4 which indicates the selected variables have 

B A C 
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association with the changes and were used in the process as was shown by Wang  and 

Maduako  (2018). It is also evident that likelihood of transition, DEM and population 

density have values higher that 0.4, meaning that these three variables are strongly 

associated with transition and therefore kept in the sub-model structure. Also, the LCM 

MLP model results reveal that likelihood of transition, distance from urban areas and 

railways were most important drivers in shaping urban growth as revealed by the 

influence order. 

Table 6: Cramer's V Test values for explanatory variables in Katsina-Ala 

 

 

 

 

 

 

 

                      Source: Author’s fieldwork, 2018 

3.3.1:   Sensitivity Analysis 

Upon completion of the entire process, MLP outputs a number of statistics that provide 

information regarding the power of the explanatory driver variables as well as the models 

accuracy in predicting class transitions and persistence. One important aspect of the 

statistics generated is termed “Forcing Independent Variables to be Constant”. After the 

system has trained on all of the explanatory variables, the system tests for the relative 

power of explanatory variables by selectively holding the inputs from selected variables 

constant. Holding the input values for a selected variable constant effectively removes 

the variability  associated with that variable. Using the modified model, the MLP 

procedure repeats the skill test using the validation data. The difference in skill thus 

provides information on the power of that variable. This process is repeated for all the 

Variable Cramer's V 

Likelihood 0.4048 

Dist_Urban 0.3623 

Dist_Roads 0.2418 

Dist_Rivers 0.2563 

DEM 0.4375 

Slope 0.3846 

Pop density 0.4140 
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driver variables to determine their influence on the skill measure and accuracy of the 

model. 

Three different sensitivity analyses were run. In the first section, a single variable is held 

constant. This is repeated for all variables. Table 7 shows the sensitivity of holding one 

variable constant. In the second sensitivity, all variables are held constant (at their mean 

values) except one.  

 Table 7: Forcing a Single Independent Variable to be Constant in Katsina-Ala 

 

 

 

 

 

 

 

 

 

 

Key: Acc= Accuracy, SM= Skill measure,  IO= Influence order, ** = Most Influential, * = 

Least Influential  

Source: Author’s fieldwork, 2018 

 

The final test in section 3 is entitled Backwards Stepwise Constant Forcing. Starting with 

the model developed with all variables, it then holds constant every variable in turn to 

determine which one has the least effect on model skill. Step 1 thus shows the skill after 

holding constant the variable that has the lowest negative effect on the skill. If a variable 

is held constant and the skill does not decrease much, then it suggests that that variable 

has little value and can be removed (See Table 7).  

Model Acc(%) SM IO 

With all variables 71.43 0.6571 N/A 

Var. 1 constant 68.91 0.6269 4 

Var. 2 constant 72.69 0.6723 7* 

Var. 3 constant 64.71 0.5765 2 

Var. 4 constant 65.97 0.5916 3 

Var. 5 constant 72.27 0.6672 6 

Var. 6 constant 70.17 0.6420 5 

Var. 7 constant 29.41 0.1529 1** 
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It then tests every possible pair of variables that include that determined in step 1 to figure 

out which pair, when held constant, have the least effect on the skill. It continues in this 

manner progressively holding another variable constant until only one variable is left. 

The backward stepwise analysis is very useful for model development. The backward 

stepwise MLP result was used in assessing the best model combination of independent 

variables based on percentage accuracy and skill measure by consecutively eliminating 

the weakest independent variable one by one.  

The results of the backwards stepwise constant forcing in Table 7  shows that the 

Table 8: The Result of MLP with backwards stepwise constant forcing in Katsina-Ala 

Model Variables included Accuracy (%) Skill measure 

With all variables All variables 71.43 0.6571 

Step 1: var.[2] constant [1,3,4,5,6,7] 72.69 0.6723 

Step 2: var.[2,5] constant [1,3,4,6,7] 72.69 0.6723 

Step 3: var.[2,5,6] constant [1,3,4,7] 71.43 0.6571 

Step 4: var.[2,5,6,3] constant [1,4,7] 65.97 0.5916 

Step 5: var.[2,5,6,3,1] constant [4,7] 60.92 0.5311 

Step 6: var.[2,5,6,3,1,4] constant [7] 57.14 0.4857 

Source: Author’s fieldwork, 2018 

exclusion of variable 2 and 5 (distance from roads and slope) yielded the best combination 

of variables with an accuracy of 72.69% and a 0.6723 skill measure compared with the 

71.43% accuracy and a 0.6571skill measure obtained from the inclusion of all the 

variables. These best combinations were then used to project sensitivity of urban built-

up area expansion. 

Table 9 presents  list of all independent variables used in the modelling process with their 

corresponding numbers. Distance from urban area was assigned  number 1, distance 

from roads, number 2, through to the last variable distance from railways with number 

8. 
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Table 9: List of independent variables used in LULC change prediction in Katsina-Ala 

Variable Code Name of Variable 

Independent variable 1 Distance from urban area in 1987 

Independent variable 2 Distance from roads 

Independent variable 3 Distance from rivers 

Independent variable 4 Digital elevation model 

Independent variable 5 Slope 

Independent variable 6 Population density 

Independent variable 7 Evidence likelihood of transition 

Independent variable 8 Distance from railways 

Source: Author’s fieldwork, 2018  

3.3.2: Transition Potential Modelling using MLP  

After selecting the predictor variables, all the transitions were then modeled in one 

transition sub-model called urban area, as they had the same driving forces, with the aim 

of producing the transition maps.  

 

 

 

 

 

 

 

 

 

Figure 8: Transition potential maps for Katsina-Ala 

Source: Author’s fieldwork, 2018 

As earlier stated, MLP was used in modelling the transitions and it generated transition 

potential maps for each of the evaluated transition sub-models.  The results of  the MLP 
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transition modelling is presented in Figures 8 and  reveals the transitions from grassland, 

bare surface and forest to urban area. These transition potential maps generated from 

MLP modelling were then used in Markov Chain model for determining the amount of 

change to be expected for each transition and for  predicting of future scenarios. 

At this stage, the model was ready to predict urban growth scenarios for 2017 based on 

the changes that occurred between 1987 and 2007, and the location of the possible future 

changes simulated from the transition potential maps. The simulated land cover maps 

were then generated from the  transition model. This was named the KAL model.  

3.3.3: Model Predictions and Validations  

Results from Markov chain model predictions are based on a transition probability matrix 

of land use and land cover changes from 1987 to 2007 and changes in the past. This 

formed the basis for projection to 2017. Figures 9 showed the actual and predicted land 

cover maps of Katsina-Ala for the year 2017 which showed noticeable differences. This 

had been expected as the historical change processes from 1987 to 2007 cannot be the 

same as from 2007 to 2017 in Markov chain analysis. Again, the driving variables are 

bound to vary during the period thereby affecting the prediction results It shows that 

urban areas were underestimated while forest area was slightly overestimated. On the 

whole, these models were able to correctly predict future scenario to some degree. In 

contrast to the hard prediction, in the soft prediction map most of the areas that had actual 

change in 2017 are considered to be vulnerable. In order to assess the extent to which 

these models were able to predict future land use and land cover through soft prediction, 

the Relative Operating Characteristic (ROC) in Idrisi Selva was used. 
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Figure 9: Land cover maps of Katsina-Ala for 2017 (Actual, left and predicted, right) 

Source: Author’s fieldwork, 2018 

The ROC statistic reveals how well a continuous surface predicts the locations given a 

distribution of a Boolean variable. In this case the soft prediction was used as the 

continuous surface to evaluate against the real change between 2007 and 2017. The result 

of the ROC statistic reveal that the Area Under the Curve (AUC) value of   was 0.858,  

which indicate  strong value, indicating the soft prediction were very good . Spatial 

modelling and simulation are not about creating models that can perfectly predict future 

states. It is and will always be impossible. But efforts should be made to bring us as close 

to this state as possible. In this context a created model can be considered a successful 

modelling tool. 

3.4: Modelling and prediction of  the pattern of urban growth for 2030 

After model validation, both hard and soft predictions were performed for the year 2030 

so as to map possible transitions from other land use and land cover categories to urban 

area. The prediction was restricted to short-term as they are more accurate than long term 

predictions (Alba, 2011;  Araya, 2009). Figure 10 shows the predicted land cover maps in 
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2030 complemented by Table 10. The resulting 2030 prediction indicate that there will be 

significant changes in the future 

Table 10: Projected land cover  statistics for in Katsina-Ala for year 2030 

 

 

 

 

 

 

 

     Source: Author’s fieldwork, 2018 

Based on the predicted results for 2030 grassland will dominate the land cover classes in 

the area accounting for 43.02% of the area followed by farmland (39.73%), forest (9.46%), 

urban area (6.35%), water body(1.21%) and bare surfaces (0.23%). The trend shows that 

grassland, urban area and water body will increase by 18.15%, 0.43% and 0.73% 

respectively as depicted in Figure 9 and Table 11. This agrees with the works of Jande et 

al, ( 2019)  in their study on urban growth assessment and its impact on deforestation in 

Makurdi metropolis , Nigeria. Urban area is predicted to cover the south western, north 

western parts of the area and grassland will cover the south east and the west. Farmland, 

forest and bare surface will decrease during the period by 18.21%, 1.34% and 0.11%. The 

trend in farmland transition between 2017 and 2030 is similar to that of Otukpo area 

where farmlands are decreasing with time.  

 

 

 

 

 

Land cover Area  (Ha) Area (%) 

Water Body 3247 1.21 

Urban Area 17083 6.35 

Grass land 115669 43.02 

Bare Surface 605 0.23 

Forest 25431 9.46 

Farm land 106829 39.73 

Total  268864 100 
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Table 11: Changed areas between LULC in  2017 and 2030 for Katsina-Ala 

Land cover 

Classes 

LULC in 2017 LULC in 2030 Change 

Area (Ha) Area (%) Area (Ha) Area (%) Area (Ha) Rate % 

Water Body 1323 0.49 3247 1.21 1924 +0.72 

Urban Area 15905 5.92 17083 6.35 1178 +0.43 

Grassland 66824 24.87 115669 43.02 48845 +18.15 

Bare Surface 896 0.34 605 0.23 -291 -0.11 

Forest 29026 10.80 25431 9.46 -3595 -1.34 

Farmland 154679 57.58 106829 39.73 -47850 -18.21 

Total 268864 100 268864 100   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Land cover maps of Katsina-Ala (2017 left, and 2030 projected, right) 

Source: Author’s fieldwork, 2018 

3.4.1: Soft Prediction 

The soft prediction output is made up of maps that show  the probability of change for a 

given set of transitions. The soft output represents a continuous mapping of vulnerability 

to change for selected set of transitions. This prediction identified the extent to which the 

land area has the susceptibility to be altered. The soft prediction output detected the areas 
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with varying degrees of vulnerability instead of identifying what and how much of land 

cover categories would be changed. From the modelled output for Katsina-Ala, the north 

west has higher degree of vulnerability of transition to other land cover categories 

3.4.2: Impact of Urban Growth on Deforestation  

The impact of urban growth on forest loss (deforestation) was assessed after the 2030 

projection. A closer look at the contributions to net change in forest and urban area 

between 1987 and the projected 2030 reveals the  salient  details (See Figure 11). 

The urban area is the third largest contributor to deforestation with forest losing over 

4052ha of land to urban expansion during the period. Forests are ranked second in 

contribution to urban expansion, second only to farmlands. 

 

 

 

 

 

 

 

 

 

                        

Figure 11: Contributions to net change in forest and urban area from 1987-2030 in 

Katsina-Ala 

Source: Author’s fieldwork, 2018 

3.5: Conclusion 

This study has mapped and evaluated land use and land cover changes in Katsina-Ala so 

as to predict future patterns using a geospatial approach. The study predicted that by the 

year 2030 grassland will dominate the land cover classes in the area accounting for 43.02% 
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of the area followed by farmland (39.73%), forest (9.46%), urban area (6.35%), water 

body(1.21%) and bare surfaces (0.23%). The trend shows that grassland, urban area and 

water body will increase by 18.15%, 0.43% and 0.73% respectively. These predicted 

changes was attributed to increase in population and infrastructural developments to 

meet this population growth. Going by this development, it is obvious that the forest area 

of Katsina-Ala will be adversely affected because of increase in deforestation and urban 

area. Agricultural expansion is also affected by urban expansion as areas previously 

under cultivation are converted to urban areas. This has the effect of reducing areas under 

cultivation especially at the peri-urban fringes where there exist barriers to prevent 

further expansion of these agricultural areas. This has a tendency of reducing farm output 

if intensive practices are not adopted. Where there are no barriers, there is the tendency 

for cultivated areas to expand further to accommodate the loss to urban areas thereby 

causing more deforestation.   

Based on the nature and rate of change of various land use and land cover types identified 

in the study area especially from 1987 to 2017 and the modelled results for 2030, the 

following recommendations are made:  

▪ As a result of the increasing urban expansion at the cost of farmland and the 

likelihood of its continuation in the future, food insecurity and environmental 

disequilibrium are most likely. Developing and implementing proper urban plans 

for sustainable land use is highly recommended. 

▪ Government should evolve a policy that will prioritise the provision of  

infrastructural facilities and social amenities to area where development is 

predicted to occur.  

▪ Public enlightenment on the practice of community and urban forestry, 

afforestation and the need to desist from deforestation should be encouraged.  

▪ Most importantly, the planning and decision-making   authorities must  integrate  

new  technologies,  such  as  remote  sensing  and GIS  into their decision making 
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processes. Using remote sensing data and information to understand the dynamics 

of the urban environment may contribute to better urban policy and management. 
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