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Abstract: In this paper, we study the generalized wave equation of the form  
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where   (   )    [   )    ,    is the n- dimensional Euclidean 

 Space,     is named the ultra- hyperbolic operator iterated   - times, defined by 
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        is a positive constant. We obtain  (   )as a solution for such equation. Moreover, by   – 

approximation the elementary solution       (   )   ( 
  

 ⁄   
)    is obtained. Also under  certain 

conditions uniqueness and boundness of the solution is established. 
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1. Introduction: 

It is well known for the  - dimensional wave equation 

  

   
 (   )      (   )                                               (1.1) 

With the initial conditions 
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Where   and    are given functions. By solving the Cauchy problem for such 

equation, the Fourier transform has been applied and the solution is given by  

 ̂(   )   ̂( )    (  | |)    ̂( )
   (  | |)  

  | |
 

Where | |    
    

      
  

(See [1]). By using the inverse Fourier transform, we obtain  (   ) in the 

convolution form, that is  

 (   )   ( )    ( )   ( )    ( )                                       (1.2) 

Where    is an inverse Fourier transform of     ̂( )  
   (  | |) 
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  and    is an 

inverse Fourier transform of   ̂( )     (  | |)   
 

  
  ̂( ). 

And the solution, for the equation  
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was considered (See [2]). 

Also the Problem 
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with initial conditions 
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was considered,(See [3]). 

And for, the problem 
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With  the initial conditions 
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was considered in [4]. 

In this paper, we will study equation   

  

   
 (   )    ( )  (   )   (     (   ))                                     (1.4)                                                        
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Which is in the form of nonlinear wave equation. Under certain  conditions , we 

obtain   

 (   )   (   )   (     (   ))     

as a unique solution of (1.4) where   (   ) is an elementary solution of (1.4).   

There are a lot of problems use the ultra –hyperbolic operator, see [5], [6], [7] and 

[8]. 

 

2. Preliminaries: 

Definition 2.1. Let      ( 
 ) – the space of integrable function in   . 

The Fourier transform of  ( ) is defined by  

 ̂( )  ∫    (   ) ( )  
                                                        (2.1) 

Where    (          ),   (          )  
  (   )                    is the inner 

product in    and              . 

Also, the inverse of Fourier transform is defined by 

 ( )  
 

(  ) 
∫   (   ) ̂( )  
                                                          (2.2) 

See [9]. 

 

Definition 2.2.Let      and   is a real number 

 ( )   (  ) as         | ( )| is bounded as     

and  ( )   (  ) as         | ( )|    as     

 

Lemma 2.3.Given the function  
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whereΓ  denotes the Gamma function. That is ∫  ( )  
   is bounded, (See [4]). 

 

3. Main Results: 

Lemma 3.1.Given the operator: 

  
  

   
   ( )                                                                 (3.1) 

Where       is the dimensional Euclidean space  , (          )  
    is a 

positive constant,   is a non negative integer and    is the ultra- hyperbolic 

operator iterated  - times.Then we obtain 

 (   )   ( 
  

 ⁄   
)                                                           (3.2) 

Where  (   )is the elementary solution for the operator   defined by (3.1). 

Proof: Using [3] 

We have to find function  (   ) from the equation  

 ( (   ))   (   ) 

Where  (   ) is Dirac delta function for (   )    (   ). We can also write 
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By taking the Fourier transform defined by (2.1) to both sides of (3.3), we obtain  
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We consider also 
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With initial conditions                                                         
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And let      . Thus we have 
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 ̂(   )           and    
  ̂
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Then, we get  
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Thus(See [10])  , we have  
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Where  ( )is a Heaviside function. 

By applying the inverse Fourier transform to (3.4), we obtain the solution  (   ) 

in the form 

 (   )    ( )                                                          (3.7) 

Where   ( ) is the inverse transform of    ̂( )  
    (√     )

 
  

 (√     )
  

It is tempered distributions but it is not    ( 
 )  the space of integrable function. 

So we cannot compute the inverse Fourier transform   ( ) directly. 

 Thus we compute the inverse   ( ) by using the method of   - approximation. 

Let us defined  
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We see that   
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 ) and   
 ̂( )    ̂ uniformly as      

So that   ( ) will be limit in the topology of tempered distribution of   
 ( ). Now 
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By changing to bipolar coordinates. Now, put 

                         ,                              ; 

                                   ,                   

                       and      . 

Where   
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Where                                and     are the elements of surface 

area on the unit sphere in    and    respectively, where   
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Set            (   )    
 ( )                                                                                      (3.10) 

Which is    – approximation of  (   ) in (3.10)  and for       (   )   (   ) 
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It follows that  (   )   ( 
  

 ⁄   
)  as    .where  (   ) is an elementary solution. 

Corollary 3.2. 
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Proof: By applying the inverse of Fourier transform to (3.6), we obtain the 

solution  (   ) in the form   
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Theorem 3.3.given the nonlinear equation 
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for  (   )    (   ),   is a positive number and with the following conditions on   

and   as follows: 

(1)   (   )is the space of function on     (   ). 

(2)     satisfies the Lipchitz condition, 

| (     )   (     )|   |   |         

for some constant        
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for   (          )    , 

                    and  (   ) is a function on     (   ). 

Then we obtain  

 (   )   (   )   (     (   ))                                                    (3.14) 

as a unique solution of (3.13) for        is a compact subset of    and       

with   is constant  and  (   ) is an elementary solution defined by (3.3) and also 

 (   ) is bounded for any fixed     .  

Proof: convolving both sides of (1.4) with  (   ) , that is 
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We next show that  (   ) is bounded on    (   ). Using (3.11), we have,  
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Where   ( ) was defined in (3.12) and    
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Thus   (   ) is bounded on    (   ) . 

We next show that  (   ) is unique. Let  (   ) be another solution of (1.4), then 
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where  (  ) is the volume of the surface on    . Choose 

  
 

| (   )|  (  )
. Thus from (3.15) 

‖   ‖  α‖   ‖   where    α   | (   )|  (  )   . 

It follows that  ‖   ‖    , thus    . 

That is the solution   of (3.13) is unique for (   )     (     where  (   ) is defined 

by (3.14). 
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