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Abstract: In this paper, we study the generalized wave equation of the form
2

Lu=—
b ot?

u(x, t) + C2(@*u(x t) = f(x,t, u(x )
with the initial conditions

ou(x,0
ulx0) _
ot

u(x,0) = 0 and

where (x,t)eR"X[0,) ,R"is the n- dimensional Euclidean

Space, OXis named the ultra- hyperbolic operator iterated k- times, defined by
2 2 2 2 2 \K
ok = a_+a_+...+a__a_ ..... 9 ,
x%  0x3 0x3  0%p4q 0x21q

p+q=n, Cis a positive constant. We obtain u(x,t)as a solution for such equation. Moreover, by € —
. . . =0/ +1 . . .
approximation the elementary solution E(x,t) = O(e At ) is obtained. Also under certain

conditions uniqueness and boundness of the solution is established.
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1. Introduction:

It is well known for the n- dimensional wave equation
0? 2 _
Eu(x, t) + C*Au(x,t) =0
With the initial conditions
0
u(x,0) = f(x) and au(x, 0) = g(x)

Where f and g are given functions. By solving the Cauchy problem for such

(1.1)

equation, the Fourier transform has been applied and the solution is given by

& t) = £(§) cos(2mlg) t + 8(¥) %ﬂ?l)t

Where [§]* = § + & + -+ 8

(See [1]). By using the inverse Fourier transform, we obtain u(x,t) in the
convolution form, that is

u(x, t) = f(x) * Pe(x) + g(x) * (%)
sin(2m|&|)t

and Y, 1s an
2mlg| e

Where ¢, is an inverse Fourier transform of ¢.(§) =

inverse Fourier transform of ry(§) = cos(2m|E) t = %&(E).

And the solution, for the equation

2

0
Wu(x, t) + C2(A)*u(x,t) =0

where

92 92 92 9 3%\
A= | —  — e ——— ... )

<6xf * 0x3 ot 0x3 * )& o >
was considered (See [2]).

Also the Problem

2

5}
ﬁu(x, t) + C2(@*u(x,t) =0

with 1nitial conditions

u(x,0) = f(x) and %u(x, 0) = g(x)

was considered,(See [3]).

And for, the problem

Zu D) + C2@ulst) = f(xtu(x v)

(1.2)

(1.3)
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With the initial conditions
0
u(x,0) = f(x) and au(x, 0) =gx)

was considered in [4].

In this paper, we will study equation

Zu(x D) + C2@Fuxt) = f(x 6 u(x, ) (1.4)
u(x,0) = 0 and u(x.0) _ 0
ot

Which is in the form of nonlinear wave equation. Under certain conditions , we
obtain

u(x,t) = E(x,t) * f(x,t,u(x, t))
as a unique solution of (1.4) where E(x,t) is an elementary solution of (1.4).

There are a lot of problems use the ultra —hyperbolic operator, see [5], [6], [7] and
[8].

2. Preliminaries:
Definition 2.1. Let feL,(R") — the space of integrable function in R".

The Fourier transform of f(x) is defined by

f(®) = [ e ®Pf(x)dx 2.1)
Where &= (81,85, ..., 8n), X = (X1, Xg, ., Xp)ERD, (§, %) = &;Xq, E5X5, v, EnX, 18 the inner
product in R" and dx = dx;dx, ...dx,.

Also, the inverse of Fourier transform is defined by

1

_ (507
(§) = G Jn € VTG0 dx (2.2)

See [9].
Definition 2.2.1.et t> 0 and p is a real number
f(t) = 0(tP)ast —> 0 < t7P|f(t)| is bounded ast - 0

and f(t) = o(tP) ast—-> 0 <t P|f(t)] > 0ast— 0

Lemma 2.3.Given the function
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p+q
f(x) = exp[— ZX + Z
] p+1
Where (x4,X5, ...,Xp)€ER™,p+q=n ,Z X < Zf’+pq+1 ; . Then

0,0, TIArED
rh

J f(x)dx| <
RN

wherel' denotes the Gamma function. That is fRn f(x)dx is bounded, (See [4]).

3. Main Results:

Lemma 3.1.Given the operator:

L=2 4 c2(o)k (3.1)

at2

Where p + q = n is the dimensional Euclidean spaceR", (x4, X3, ..., Xp)€R",Cis a
positive constant, k is a non negative integer and oX is the ultra- hyperbolic
operator iterated k- times.Then we obtain

EGxt) = 0 /™ (3.2)
Where E(x, t)is the elementary solution for the operator L defined by (3.1).
Proof: Using [3]
We have to find function E(x,t) from the equation

L(E(x, 1)) = 8(x,t)
Where 8(x,t) is Dirac delta function for (x,t)eR"X(0, ). We can also write

:—;E(X. t) + C2(0)XE(x, t) = 8(x).8(t) (3.3)
By taking the Fourier transform defined by (2.1) to both sides of (3.3), we obtain

2 _ Kk
%E(E’ 0+ c ((Egﬂ + E%)+2 + et Elz)+q) - (E% + E% + et EIZ))) E(E, t) = o(b),

We consider also

DA +C2 (8 — 8 — o — B4y + By o+ Eyg) UED = 0,

With initial conditions
10 =0 and T (E0) =1
And let s > r . Thus we have

ZAED +C2 (s~ 1K D) = 0, (3.4)
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4(£0)=0 and %(g,@: 1

Where r? = & + & + -+ &land s? =& 1+t + &g

Then, we get
&Y = %))kt (3.5)
Thus(See [10]) , we have
B(E 0 = HaG b = Hy (T (3.6)

c(Vs? —rz)k

Where H(t)is a Heaviside function.
By applying the inverse Fourier transform to (3.4), we obtain the solution E(E, t)
in the form

EGE D = ¢pu(x) (3.7)

Where ¢,(x) is the inverse transform of ¢(§) = %

It is tempered distributions but it is not L;(R") the space of integrable function.
So we cannot compute the inverse Fourier transform ¢.(x) directly.

Thus we compute the inverse ¢.(x) by using the method of € - approximation.

Let us defined

i /g2 2 k
(/EE(E) — e—ec(VSZ_rZ)kZﬁ\t(E) — e—ec(vsz—rz)km“(:(z—_z)l)(t fore> 0 (3.8)

We see that ¢f(x)eL, (R") and $S(x) — ¢, uniformly as € — 0
So that ¢.(x) will be limit in the topology of tempered distribution of ¢ (x). Now

k
=1 (%) € __1 i(£x) a—ec(VsZ—12 Ksinc(vVs2=r2) t
DE00 = s o EEVFEDE = 1 [, iEemee(Fr) Sl g

c(m)k
] . ec(V57r2)
16£COI < G Jam = dg (3.9)

By changing to bipolar coordinates. Now, put

§1 =TW, & =TwWy, ..., § =Tw, ,d§; =rdwy, d§; = rdw,, ..., d§, = rdw, ;
Ep+1 = SWpt1,Epr2 = SWpi2, -, §piq = SWpyq ,AEpr1 = SAWpy 1, dEpy, =
sdwp4z, ., dEpyq = sdwpyq and p+q =n.

Where wf + w5 + -+ wj =land wjy; + Wiy + -+ whig =1
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1 —ec(m)k
45091 < s L ey s,
C\VSse —rT

Where d€ = rp_lsq_ldrdsdﬂpdﬂq, where deand dQq are the elements of surface

a
area on the unit sphere in RP and R respectively, whereQ, = ( and Qg = qu)

So,

—ec(\/sz—rz)k
1E] < f j eigaidrds,
0

c(m)
Putr =ssin@,dr = scos8dBand 0 SGSE,

(Zﬂ)“

Q.0 ® o —ec(Vs2-s2sin 02)
|pE)] < = (Illf f - (ssin8)P~'s971s cos 6 d6ds,
@m™Jo Jo c(Vs2 — s%5in62)

g —ec(s cos B)K
j j oS BF (s)P~1(sin 0)P~1s971s cos 0 dOds.

c(21'[)rl (scosB

dy sdy
Put v = ec(s cos 0)K = ecs¥(cos )k, sk = —LX _ds = =
y ( ) ( )% ec(cos 0)K cksk—1e(cos 0)K ky ’

Thus [$F(0)] < 228 2 f°°ey/5“ (sin 6)°~* cos 6> dyds

C

e Ve ks B
f f )2/K(sin ©)P~1 cos B dyd®

(21T)“ ky? (ce(cos 9)k

B —yyn/k 2
(211) J J n/Kieeh n_ ——x—(sin 9)13 1(cos 9)1 ndyde
0 C €k

0.0, TG-1 3
= (2"“)‘}1 —— z(sin 8)P~(cos 8)1"d6
Cn/kkEE_ 0

(02

2cn/k(2m)nkek
2,0 r(t-1)r&rEd
|¢E(X)| < p~=q o (k )Z_qZ 2
2¢n/k(2m)kek ! I
Set E¢(x,t) = ¢5(%) (3.10)

Which is € — approximation of E(x,t) in (3.10) and for € - 0,E€(x,t) = E(x,t)

20,9, TEyrérésy

uniformly. Now| E¢(x,t)| < T 7=q
2c0/K(2m)nkek * r=>
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n 0.0
ek Y E€(x,t)] < o

1
2kc/k(2m)n (2“1)
L. P i 6L e B
€0 2(2m)zkc/k r (Tq)

B ) = 0(e

_n 1
It follows that E(x,t) = O(e At ) as € » 0.where E(x,t) is an elementary solution.

Corollary 3.2.

227DM(t)

Bl < w———, (3.11)
M2 Q)
k
o rssinc(vVs?-r?) t 5 4 -
M(t) = fO foc((SZ—_rZ)?(rp 1s9-1drds (312)

Proof: By applying the inverse of Fourier transform to (3.6), we obtain the

solution E(x,t) in the form

E(xt) = Zon L nei(z,x)E(z, t)dg
1 sinc(Vs? — rz)kt
|E(x, 0] < (Zn)“J dg

& (VST —12)"
By changing to bipolar coordinates, we get
IE| < 1 f sinc(m)kt
@O Jan (V5= 12)"

Where d§ = rP~'s971drdsd,dQ,, dQ,and dQgare the elements of surface area on

rP~1s971drdsdQ,d Qg,

the unit sphere in RP and R9 respectively, we have

Q,0
rP~1s9-1drds = ——1 M(t)

: k
IE(x,t)] < %f fssmc(m) .
] - (2‘]'[)11 2 2 k (ZT[)n
0 -0 c(m)
2 pd
n T
WheI‘er = Tg) and 0 = Tg)’
Thus
22—nM t
|Ex, t)| < — )

Theorem 3.3.given the nonlinear equation
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ol t) + C2@Fulx, 6) = £ t,u(x, 1)) (3.13)

ou(x,0
(x0) _
ot

u(x,0) = 0and

for (x,t)eR™X(0, ), k is a positive number and with the following conditions on u
and f as follows:
(1) u(x,t)is the space of function on R™X(0, ).
(2) f satisfies the Lipchitz condition,
If(x,t,w) — f(x, t,w)| < Alu—w|

for some constant A > 0.

(3) fooo Jonl f (0, tu(x, )| dxdt < oo for x = (x1, X, ..., X )ER™

0 <t < owandu(x,t) is a function on R"X(0, o).
Then we obtain

u(x,t) = E(x,t) * f(x, t,u(x, t)). (3.14)

as a unique solution of (3.13) for x € Q, is a compact subset of R" and 0 <t <T
with T is constant and E(x,t) is an elementary solution defined by (3.3) and also
u(x, t) is bounded for any fixed t > 0 .
Proof: convolving both sides of (1.4) with E(x,t) , that is

E(x,t) = [aa—tzzu(x, t) + C2(O)Xu(x, t)] = E(x,t) * f(x,t, u(x, t))

Or
2
[W E(x,t) + C2(@)XE(x, )] * u(x, t) = E(x,t) * f(x, t, u(x, t))
So
8(x,t) *u(x,t) = E(x, t) * f(x, t,u(x, t)).
Thus

u(x,t) = E(x,t) * f(x, t,u(x, t)) = foo f E(r, s)f(x —-rt—s,ux—r,t— s))drds
—oo JRN
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We next show that u(x, t) is bounded on R"X(0, ). Using (3.11), we have,
lu(x, t)| < j |E(r, s)I|f(x —r,t —s,u(x — r,t — 5))|drds
—oo JRN

_22"M@N
T wr®rd

Where M(t) was defined in (3.12) and
N = fjooo fRn|f(x —rt—su(x—rt—s))|drds,
Thus u(x,t) is bounded on R"X(0, ) .
We next show that u(x, t) is unique. Let w(x,t) be another solution of (1.4), then
w(x,t) = E(x, t) * f(x, t, w(x, t))
for (x,t)eQ,X(0, T] the compact subset of R"X[0, )

and E(x,t) is defined in (3.3). Now define
sup

lux Dl =  xeQ  |ux,D].
0<t<sT

So ,

lu(x,t) —w(x,t)| = |E(x, t) = f(x, t,u(x, t)) —E(xt) * f(x, t, w(x, t))|

Sf f|E(r,s)|.|f(x—r,t—s,u(x—r,t—s))—f(x—r,t—s,w(x—r,t—s))|drds
—oco JRN

SAIE(r,s)I] lux—r,t—s) —w(x—r,t—s)|drds
—co JRN

By the condition (2) on f, and for (x,t)eQyX(0, T]

we have

T
[u — w| SAlE(r,s)lIlu—wlIf dsf dr

= A[E(r, $)|T V(Qo) |lu — wl| (3.15)
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where V(Q,) is the volume of the surface on Q,. Choose

1
[E(r,8)ITV(Q0)’

lu—w| <allu—w|| where a = A|E(r,s)|TV(Q,) < 1.
It follows that |lu—w|| =0, thusu = w.

Thus from (3.15)

That is the solution u of (3.13) is unique for (x,t)e Q,X(0, T] where u(x,t) is defined
by (3.14).
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