On Nonlinear Ultra -Hyperbolic Wave Operator

A.S. Abdel-Rady, S.Z. Rida, F.A. Mohammed and H.M. AboEl-Majd
Math. Department, Faculty of Science, South Valley University, Qena 83523, Egypt

Abstract: In this paper, we study the generalized wave equation of the form

$$
\mathrm{Lu}=\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \mathrm{u}(\mathrm{x}, \mathrm{t})+\mathrm{C}^{2}(\square)^{\mathrm{k}} \mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{f}(\mathrm{x}, \mathrm{t}, \mathrm{u}(\mathrm{x}, \mathrm{t}))
$$

with the initial conditions

$$
\mathrm{u}(\mathrm{x}, 0)=0 \text { and } \frac{\partial u(x, 0)}{\partial t}=0
$$

where ($\mathrm{x}, \mathrm{t}) \in \mathcal{R}^{\mathrm{n}} \mathrm{X}[0, \infty), \mathcal{R}^{\mathrm{n}}$ is the n - dimensional Euclidean
Space, \square^{k} is named the ultra- hyperbolic operator iterated k- times, defined by

$$
\square^{k}=\left(\frac{\partial^{2}}{\partial \mathrm{x}_{1}^{2}}+\frac{\partial^{2}}{\partial \mathrm{x}_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial \mathrm{x}_{\mathrm{p}}^{2}}-\frac{\partial^{2}}{\partial \mathrm{x}_{\mathrm{p}+1}^{2}}-\cdots-\frac{\partial^{2}}{\partial \mathrm{x}_{\mathrm{p}+\mathrm{q}}^{2}}\right)^{\mathrm{k}},
$$

$\mathrm{p}+\mathrm{q}=\mathrm{n}, \mathrm{C}$ is a positive constant. We obtain $\mathrm{u}(\mathrm{x}, \mathrm{t})$ as a solution for such equation. Moreover, by $\epsilon-$ approximation the elementary solution $\quad E(x, t)=0\left(\epsilon^{-n / k^{+1}}\right)$ is obtained. Also under certain conditions uniqueness and boundness of the solution is established.

Keywords: Generalized ultra- hyperbolic wave equation, Fourier transform , ϵ - approximation, asymptotic solution, boundness and uniqueness.
Mathematics Subject Classification: 47F05.

1. Introduction:

It is well known for the n - dimensional wave equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} u(x, t)+C^{2} \Delta u(x, t)=0 \tag{1.1}
\end{equation*}
$$

With the initial conditions

$$
\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}) \text { and } \frac{\partial}{\partial \mathrm{t}} \mathrm{u}(\mathrm{x}, 0)=\mathrm{g}(\mathrm{x})
$$

Where f and g are given functions. By solving the Cauchy problem for such equation, the Fourier transform has been applied and the solution is given by

$$
\hat{\mathrm{u}}(\xi, \mathrm{t})=\hat{\mathrm{f}}(\xi) \cos (2 \pi|\xi|) \mathrm{t}+\hat{\mathrm{g}}(\xi) \frac{\sin (2 \pi|\xi|) \mathrm{t}}{2 \pi|\xi|}
$$

Where $|\xi|^{2}=\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}$
(See [1]). By using the inverse Fourier transform, we obtain $u(x, t)$ in the convolution form, that is

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{f}(\mathrm{x}) * \psi_{\mathrm{t}}(\mathrm{x})+\mathrm{g}(\mathrm{x}) * \phi_{\mathrm{t}}(\mathrm{x}) \tag{1.2}
\end{equation*}
$$

Where ϕ_{t} is an inverse Fourier transform of $\widehat{\phi_{t}}(\xi)=\frac{\sin (2 \pi|\xi|) t}{2 \pi|\xi|}$ and ψ_{t} is an inverse Fourier transform of $\widehat{\psi}_{t}(\xi)=\cos (2 \pi|\xi|) t=\frac{\partial}{\partial t} \widehat{\Phi_{t}}(\xi)$.
And the solution, for the equation

$$
\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \mathrm{u}(\mathrm{x}, \mathrm{t})+\mathrm{C}^{2}(\Delta)^{\mathrm{k}} \mathrm{u}(\mathrm{x}, \mathrm{t})=0
$$

where

$$
\Delta^{\mathrm{k}}=\left(\frac{\partial^{2}}{\partial \mathrm{x}_{1}^{2}}+\frac{\partial^{2}}{\partial \mathrm{x}_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial \mathrm{x}_{\mathrm{p}}^{2}}+\frac{\partial^{2}}{\partial \mathrm{x}_{\mathrm{p}+1}^{2}}+\cdots+\frac{\partial^{2}}{\partial \mathrm{x}_{\mathrm{p}+\mathrm{q}}^{2}}\right)^{\mathrm{k}}
$$

was considered (See [2]).
Also the Problem

$$
\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \mathrm{u}(\mathrm{x}, \mathrm{t})+\mathrm{C}^{2}(\square)^{\mathrm{k}} \mathrm{u}(\mathrm{x}, \mathrm{t})=0
$$

with initial conditions

$$
\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}) \text { and } \frac{\partial}{\partial \mathrm{t}} \mathrm{u}(\mathrm{x}, 0)=\mathrm{g}(\mathrm{x})
$$

was considered,(See [3]).
And for, the problem

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \mathrm{u}(\mathrm{x}, \mathrm{t})+\mathrm{C}^{2}(\mathrm{\square}) \mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{f}(\mathrm{x}, \mathrm{t}, \mathrm{u}(\mathrm{x}, \mathrm{t})) \tag{1.3}
\end{equation*}
$$

With the initial conditions

$$
\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}) \text { and } \frac{\partial}{\partial \mathrm{t}} \mathrm{u}(\mathrm{x}, 0)=\mathrm{g}(\mathrm{x})
$$

was considered in [4].
In this paper, we will study equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \mathrm{u}(\mathrm{x}, \mathrm{t})+\mathrm{C}^{2}(\square)^{\mathrm{k}} \mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{f}(\mathrm{x}, \mathrm{t}, \mathrm{u}(\mathrm{x}, \mathrm{t})) \tag{1.4}
\end{equation*}
$$

$\mathrm{u}(\mathrm{x}, 0)=0$ and $\quad \frac{\partial u(x, 0)}{\partial t}=0$
Which is in the form of nonlinear wave equation. Under certain conditions, we obtain

$$
\mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{E}(\mathrm{x}, \mathrm{t}) * \mathrm{f}(\mathrm{x}, \mathrm{t}, \mathrm{u}(\mathrm{x}, \mathrm{t}))
$$

as a unique solution of (1.4) where $E(x, t)$ is an elementary solution of (1.4).
There are a lot of problems use the ultra -hyperbolic operator, see [5], [6], [7] and [8].

2. Preliminaries:

Definition 2.1. Let $\mathrm{f} \in \mathrm{L}_{1}\left(\mathcal{R}^{\mathrm{n}}\right)$ - the space of integrable function in \mathcal{R}^{n}.
The Fourier transform of $\mathrm{f}(\mathrm{x})$ is defined by

$$
\begin{equation*}
\hat{\mathrm{f}}(\xi)=\int_{\mathcal{R}^{\mathrm{n}}} \mathrm{e}^{-\mathrm{i}(\xi, \mathrm{x})} \mathrm{f}(\mathrm{x}) \mathrm{dx} \tag{2.1}
\end{equation*}
$$

Where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{n}}\right), \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathcal{R}^{\mathrm{n}},(\xi, \mathrm{x})=\xi_{1} \mathrm{x}_{1}, \xi_{2} \mathrm{x}_{2}, \ldots, \xi_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$ is the inner product in \mathcal{R}^{n} and $\mathrm{dx}=\mathrm{dx}_{1} \mathrm{dx}_{2} \ldots \mathrm{dx}_{\mathrm{n}}$.
Also, the inverse of Fourier transform is defined by

$$
\begin{equation*}
\mathrm{f}(\xi)=\frac{1}{(2 \pi)^{\mathrm{n}}} \int_{\mathcal{R}^{n}} \mathrm{e}^{\mathrm{i}(\xi, \mathrm{x})} \hat{\mathrm{f}}(\mathrm{x}) \mathrm{dx} \tag{2.2}
\end{equation*}
$$

See [9].

Definition 2.2.Let $\mathrm{t}>0$ and p is a real number
$\mathrm{f}(\mathrm{t})=\mathrm{O}\left(\mathrm{t}^{\mathrm{p}}\right)$ as $\mathrm{t} \rightarrow 0 \Leftrightarrow \mathrm{t}^{-\mathrm{p}}|\mathrm{f}(\mathrm{t})|$ is bounded as $\mathrm{t} \rightarrow 0$
and $\mathrm{f}(\mathrm{t})=\mathrm{o}\left(\mathrm{t}^{\mathrm{p}}\right)$ as $\mathrm{t} \rightarrow 0 \Leftrightarrow \mathrm{t}^{-\mathrm{p}}|\mathrm{f}(\mathrm{t})| \rightarrow 0$ as $\mathrm{t} \rightarrow 0$

Lemma 2.3.Given the function

$$
f(x)=\exp \left[-\sqrt{\left.-\sum_{i=1}^{p} x_{i}^{2}+\sum_{j=p+1}^{p+q} x_{j}^{2}\right]}\right.
$$

Where $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathcal{R}^{\mathrm{n}}, \mathrm{p}+\mathrm{q}=\mathrm{n}, \sum_{\mathrm{i}=1}^{\mathrm{p}} \mathrm{x}_{\mathrm{i}}^{2}<\sum_{\mathrm{j}=\mathrm{p}+1}^{\mathrm{p}+\mathrm{q}} \mathrm{x}_{\mathrm{j}}^{2}$. Then

$$
\left|\int_{\mathcal{R}^{\mathrm{n}}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right| \leq \frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{2} \frac{\Gamma(\mathrm{n}) \Gamma\left(\frac{\mathrm{p}}{2}\right) \Gamma\left(\frac{2-\mathrm{n}}{2}\right)}{\Gamma\left(\frac{2-\mathrm{p}}{2}\right)}
$$

where Γ denotes the Gamma function. That is $\int_{\mathcal{R}^{n}} f(x) d x$ is bounded, (See [4]).

3. Main Results:

Lemma 3.1.Given the operator:

$$
\begin{equation*}
\mathrm{L}=\frac{\partial^{2}}{\partial \mathrm{t}^{2}}+\mathrm{C}^{2}(\square)^{\mathrm{k}} \tag{3.1}
\end{equation*}
$$

Where $\mathrm{p}+\mathrm{q}=\mathrm{n}$ is the dimensional Euclidean space $\mathcal{R}^{\mathrm{n}},\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathcal{R}^{\mathrm{n}}, \mathrm{C}$ is a positive constant, k is a non negative integer and \square^{k} is the ultra- hyperbolic operator iterated k- times.Then we obtain

$$
\begin{equation*}
E(x, t)=O\left(\epsilon^{-n / k^{+1}}\right) \tag{3.2}
\end{equation*}
$$

Where $E(x, t)$ is the elementary solution for the operator L defined by (3.1).

Proof: Using [3]

We have to find function $E(x, t)$ from the equation

$$
\mathrm{L}(\mathrm{E}(\mathrm{x}, \mathrm{t}))=\delta(\mathrm{x}, \mathrm{t})
$$

Where $\delta(\mathrm{x}, \mathrm{t})$ is Dirac delta function for $(\mathrm{x}, \mathrm{t}) \in \mathcal{R}^{\mathrm{n}} \mathrm{X}(0, \infty)$. We can also write

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} E(x, t)+C^{2}(\square)^{k} E(x, t)=\delta(x) \cdot \delta(t) \tag{3.3}
\end{equation*}
$$

By taking the Fourier transform defined by (2.1) to both sides of (3.3), we obtain

$$
\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \widehat{\mathrm{E}}(\xi, \mathrm{t})+\mathrm{C}^{2}\left(\left(\xi_{\mathrm{p}+1}^{2}+\xi_{\mathrm{p}+2}^{2}+\cdots+\xi_{\mathrm{p}+\mathrm{q}}^{2}\right)-\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{\mathrm{p}}^{2}\right)\right)^{\mathrm{k}} \widehat{\mathrm{E}}(\xi, \mathrm{t})=\delta(\mathrm{t})
$$

We consider also

$$
\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \hat{\mathrm{u}}(\xi, \mathrm{t})+\mathrm{C}^{2}\left(-\xi_{1}^{2}-\xi_{2}^{2}-\cdots-\xi_{\mathrm{p}}^{2}+\xi_{\mathrm{p}+1}^{2}+\xi_{\mathrm{p}+2}^{2}+\cdots+\xi_{\mathrm{p}+\mathrm{q}}^{2}\right)^{\mathrm{k}} \hat{\mathrm{u}}(\xi, \mathrm{t})=0
$$

With initial conditions

$$
\widehat{\mathrm{u}}(\xi, 0)=0 \quad \text { and } \quad \frac{\partial \widehat{\mathrm{u}}}{\partial \mathrm{t}}(\xi, 0)=1
$$

And let $s>r$. Thus we have

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \hat{\mathrm{u}}(\xi, \mathrm{t})+\mathrm{C}^{2}\left(\mathrm{~s}^{2}-\mathrm{r}^{2}\right)^{\mathrm{k}} \hat{\mathrm{u}}(\xi, \mathrm{t})=0 \tag{3.4}
\end{equation*}
$$

$$
\widehat{\mathrm{u}}(\xi, 0)=0 \quad \text { and } \quad \frac{\partial \widehat{\mathrm{u}}}{\partial \mathrm{t}}(\xi, 0)=1
$$

Where $r^{2}=\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{\mathrm{p}}^{2}$ and $\quad \mathrm{s}^{2}=\xi_{\mathrm{p}+1}^{2}+\xi_{\mathrm{p}+2}^{2}+\cdots+\xi_{\mathrm{p}+\mathrm{q}}^{2}$.
Then, we get

$$
\begin{equation*}
\hat{u}(\xi, t)=\frac{\operatorname{sinc}\left(\sqrt{s^{2}-r^{2}}\right)^{k} t}{c\left(\sqrt{s^{2}-r^{2}}\right)^{k}} \tag{3.5}
\end{equation*}
$$

Thus(See [10]), we have

$$
\begin{equation*}
\widehat{\mathrm{E}}(\xi, \mathrm{t})=\mathrm{H} \hat{\mathrm{u}}(\xi, \mathrm{t})=\mathrm{H}(\mathrm{t})\left(\frac{\operatorname{sinc}\left(\sqrt{\mathrm{s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}} \mathrm{t}}{\mathrm{c}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}}}\right) \tag{3.6}
\end{equation*}
$$

Where $\mathrm{H}(\mathrm{t})$ is a Heaviside function.
By applying the inverse Fourier transform to (3.4), we obtain the solution $E(\xi, t)$ in the form

$$
\begin{equation*}
\mathrm{E}(\xi, \mathrm{t})=\phi_{\mathrm{t}}(\mathrm{x}) \tag{3.7}
\end{equation*}
$$

Where $\phi_{t}(x)$ is the inverse transform of $\widehat{\phi_{t}}(\xi)=\frac{\operatorname{sinc}\left(\sqrt{s^{2}-r^{2}}\right)^{k} t}{c\left(\sqrt{s^{2}-r^{2}}\right)^{k}}$
It is tempered distributions but it is not $L_{1}\left(\mathcal{R}^{n}\right)$ the space of integrable function.
So we cannot compute the inverse Fourier transform $\phi_{\mathrm{t}}(\mathrm{x})$ directly.
Thus we compute the inverse $\phi_{\mathrm{t}}(\mathrm{x})$ by using the method of ϵ - approximation.
Let us defined

$$
\begin{equation*}
\widehat{\phi_{\mathrm{t}}^{\epsilon}}(\xi)=\mathrm{e}^{-\epsilon c\left(\sqrt{s^{2}-r^{2}}\right)^{\mathrm{k}}} \widehat{\phi_{\mathrm{t}}}(\xi)=\mathrm{e}^{-\epsilon c\left(\sqrt{s^{2}-r^{2}}\right)^{\mathrm{k}}} \frac{\operatorname{sinc}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}} \mathrm{t}}{\mathrm{c}\left(\sqrt{s^{2}-r^{2}}\right)^{k}} \text { for } \epsilon>0 \tag{3.8}
\end{equation*}
$$

We see that $\phi_{\mathrm{t}}^{\epsilon}(\mathrm{x}) \in \mathrm{L}_{1}\left(\mathcal{R}^{\mathrm{n}}\right)$ and $\widehat{\phi_{\mathrm{t}}^{\epsilon}}(\mathrm{x}) \rightarrow \widehat{\phi_{\mathrm{t}}}$ uniformly as $\epsilon \rightarrow 0$
So that $\phi_{\mathrm{t}}(\mathrm{x})$ will be limit in the topology of tempered distribution of $\phi_{\mathrm{t}}^{\epsilon}(\mathrm{x})$. Now $\phi_{\mathrm{t}}^{\epsilon}(\mathrm{x})=\frac{1}{(2 \pi)^{\mathrm{n}}} \int_{\mathcal{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}(\xi, \mathrm{x})} \widehat{\phi_{\mathrm{t}}^{\epsilon}}(\xi) \mathrm{d} \xi=\frac{1}{(2 \pi)^{\mathrm{n}}} \int_{\mathcal{R}^{\mathrm{n}}} \mathrm{e}^{\mathrm{i}(\xi, \mathrm{x})} \mathrm{e}^{-\epsilon \mathrm{c}\left(\sqrt{s^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}} \frac{\operatorname{sinc}\left(\sqrt{\mathrm{s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}} \mathrm{t}}{\mathrm{c}\left(\sqrt{\mathrm{s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}}} \mathrm{d} \xi}$

$$
\begin{equation*}
\left|\phi_{\mathrm{t}}^{\epsilon}(\mathrm{x})\right| \leq \frac{1}{(2 \pi)^{\mathrm{n}}} \int_{\mathcal{R}^{\mathrm{n}}} \frac{\mathrm{e}^{-\epsilon \mathrm{c}\left(\sqrt{s^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}}}}{\mathrm{c}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}}} \mathrm{~d} \xi \tag{3.9}
\end{equation*}
$$

By changing to bipolar coordinates. Now, put
$\xi_{1}=\mathrm{r} \omega_{1}, \xi_{2}=\mathrm{r} \omega_{2}, \ldots, \xi_{\mathrm{p}}=\mathrm{r} \omega_{\mathrm{p}} \quad, \mathrm{d} \xi_{1}=\mathrm{rd} \omega_{1}, \mathrm{~d} \xi_{2}=\mathrm{rd} \omega_{2}, \ldots, \mathrm{~d} \xi_{\mathrm{p}}=\mathrm{rd} \omega_{\mathrm{p}} ;$
$\xi_{p+1}=s \omega_{p+1}, \xi_{p+2}=s \omega_{p+2}, \ldots, \xi_{p+q}=s \omega_{p+q}, d \xi_{p+1}=s d \omega_{p+1}, d \xi_{p+2}=$
$\operatorname{sd} \omega_{p+2}, \ldots, d \xi_{p+q}=s d \omega_{p+q}$ and $p+q=n$.
Where $\omega_{1}^{2}+\omega_{2}^{2}+\cdots+\omega_{\mathrm{p}}^{2}=1$ and $\omega_{\mathrm{p}+1}^{2}+\omega_{\mathrm{p}+2}^{2}+\cdots+\omega_{\mathrm{p}+\mathrm{q}}^{2}=1$

Where $d \xi=r^{p-1} s^{q-1} d r d s d \Omega_{p} d \Omega_{q}$, where $d \Omega_{p}$ and $d \Omega_{q}$ are the elements of surface area on the unit sphere in \mathcal{R}^{p} and \mathcal{R}^{q} respectively, where $\Omega_{\mathrm{p}}=\frac{2 \pi^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)}$ and $\Omega_{\mathrm{q}}=\frac{2 \pi^{\frac{\mathrm{q}}{2}}}{\Gamma\left(\frac{\mathrm{q}}{2}\right)}$. So,

$$
\left|\phi_{\mathrm{t}}^{\epsilon}(\mathrm{x})\right| \leq \frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{(2 \pi)^{\mathrm{n}}} \int_{0}^{\infty} \int_{0}^{\mathrm{s}} \frac{\mathrm{e}^{-\epsilon \mathrm{c}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}}}}{\mathrm{c}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}}} \mathrm{r}^{\mathrm{p}-1} \mathrm{~s}^{\mathrm{q}-1} \mathrm{drds},
$$

Put $r=s \sin \theta, d r=s \cos \theta d \theta$ and $0 \leq \theta \leq \frac{\pi}{2}$,

$$
\begin{aligned}
& \left|\phi_{\mathrm{t}}^{\epsilon}(\mathrm{x})\right| \leq \frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{(2 \pi)^{\mathrm{n}}} \int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{e}^{-\epsilon \mathrm{c}\left(\sqrt{s^{2}-s^{2} \sin \theta^{2}}\right)^{\mathrm{k}}}}{\mathrm{c}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{s}^{2} \sin \theta^{2}}\right)^{\mathrm{k}}}(\mathrm{~s} \sin \theta)^{\mathrm{p}-1} \mathrm{~s}^{\mathrm{q}-1} \mathrm{~s} \cos \theta \mathrm{~d} \theta \mathrm{ds}, \\
& \quad=\frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{\mathrm{c}(2 \pi)^{\mathrm{n}}} \int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}} \frac{e^{-\epsilon \mathrm{c}(\operatorname{sos} \theta)^{k}}}{(\mathrm{~s} \cos \theta)^{\mathrm{k}}}(\mathrm{~s})^{\mathrm{p}-1}(\sin \theta)^{\mathrm{p}-1} \mathrm{~s}^{\mathrm{q}-1} \mathrm{~s} \cos \theta d \theta \mathrm{ds}
\end{aligned}
$$

Put $y=\epsilon c(s \cos \theta)^{\mathrm{k}}=\epsilon \operatorname{cs}^{\mathrm{k}}(\cos \theta)^{\mathrm{k}}, \mathrm{s}^{\mathrm{k}}=\frac{\mathrm{y}}{\epsilon \mathrm{c}(\cos \theta)^{\mathrm{k}}} \mathrm{ds}=\frac{\mathrm{dy}}{\mathrm{cks}^{\mathrm{k}-1} \epsilon(\cos \theta)^{\mathrm{k}}}=\frac{\mathrm{sdy}}{\mathrm{ky}}$,
Thus $\left|\phi_{\mathrm{t}}^{\epsilon}(\mathrm{x})\right| \leq \frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{\mathrm{c}(2 \pi)^{\mathrm{n}}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} \frac{\mathrm{e}^{-\mathrm{y}} \mathrm{s}^{\mathrm{n}-1}}{\mathrm{y}} /(\epsilon \mathrm{cc})(\sin \theta)^{\mathrm{p}-1} \cos \theta \frac{\mathrm{~s}}{\mathrm{ky}} \mathrm{dyd} \theta$

$$
\begin{align*}
& =\frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{(2 \pi)^{\mathrm{n}}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} \frac{\mathrm{e}^{-\mathrm{y}} \epsilon}{\mathrm{ky}}{ }^{2}\left(\frac{\mathrm{y}}{\mathrm{c} \epsilon(\cos \theta)^{\mathrm{k}}}\right)^{\mathrm{n} / \mathrm{k}}(\sin \theta)^{\mathrm{p}-1} \cos \theta \mathrm{dyd} \theta \\
& =\frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{(2 \pi)^{\mathrm{n}}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} \frac{\mathrm{e}^{-\mathrm{y}} \mathrm{y}^{\mathrm{n} / \mathrm{k}-2}}{\mathrm{c}^{\mathrm{n} / \mathrm{k}} \mathrm{k}_{\mathrm{k} \in \mathrm{k}}{ }^{\frac{\mathrm{k}}{}-1}}(\sin \theta)^{\mathrm{p}-1}(\cos \theta)^{1-\mathrm{n}} \mathrm{dyd} \theta \\
& =\frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{(2 \pi)^{\mathrm{n}}} \frac{\Gamma\left(\frac{\mathrm{n}}{\mathrm{k}}-1\right)}{\mathrm{c}^{\mathrm{n} / \mathrm{k}} \mathrm{k} \epsilon^{\frac{\mathrm{k}}{\mathrm{k}}-1}} \int_{0}^{\frac{\pi}{2}}(\sin \theta)^{\mathrm{p}-1}(\cos \theta)^{1-\mathrm{n}} \mathrm{~d} \theta \\
& =\frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{2 \mathrm{c}^{\mathrm{n} / \mathrm{k}}(2 \pi)^{\mathrm{n}} \mathrm{k} \in \epsilon^{\frac{\mathrm{n}}{\mathrm{k}}-1}} \Gamma\left(\frac{\mathrm{n}}{\mathrm{k}}-1\right) \mathrm{B}\left(\frac{\mathrm{p}}{2}, \frac{2-\mathrm{n}}{2}\right) \text {. } \\
& \left|\phi_{\mathrm{t}}^{\epsilon}(\mathrm{x})\right| \leq \frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{2 \mathrm{c}^{\mathrm{n} / \mathrm{k}}(2 \pi)^{\mathrm{n}} \mathrm{k} \in \epsilon^{\frac{\mathrm{k}}{}-1}} \frac{\Gamma\left(\frac{\mathrm{n}}{\mathrm{k}}-1\right) \Gamma\left(\frac{\mathrm{p}}{2}\right) \Gamma\left(\frac{2-\mathrm{n}}{2}\right)}{\Gamma\left(\frac{2-\mathrm{q}}{2}\right)} \tag{3.10}
\end{align*}
$$

Set $\quad E^{\epsilon}(x, t)=\phi_{t}^{\epsilon}(x)$
Which is ϵ - approximation of $E(x, t)$ in (3.10) and for $\epsilon \rightarrow 0, E^{\epsilon}(x, t) \rightarrow E(x, t)$ uniformly. Now $\left|E^{\epsilon}(x, t)\right| \leq \frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{2 \mathrm{c}^{\mathrm{n} / \mathrm{k}}(2 \pi)^{n_{k}} \mathrm{k} \in \mathrm{k}^{\frac{n}{-1}}} \frac{\Gamma\left(\frac{\mathrm{n}}{\mathrm{k}}-1\right) \Gamma\left(\frac{\mathrm{p}}{2}\right) \Gamma\left(\frac{2-\mathrm{n}}{2}\right)}{\Gamma\left(\frac{2 \mathrm{q}}{2}\right)}$

$$
\begin{gathered}
\epsilon^{\frac{\mathrm{n}}{\overline{\mathrm{k}}}-1}\left|\mathrm{E}^{\epsilon}(\mathrm{x}, \mathrm{t})\right| \leq \frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{2 \mathrm{kc}^{\mathrm{n} / \mathrm{k}}(2 \pi)^{\mathrm{n}}} \frac{\Gamma\left(\frac{\mathrm{n}}{\mathrm{k}}-1\right) \Gamma\left(\frac{\mathrm{p}}{2}\right) \Gamma\left(\frac{2-\mathrm{n}}{2}\right)}{\Gamma\left(\frac{2-\mathrm{q}}{2}\right)} \\
\lim _{\epsilon \rightarrow 0} \epsilon^{\frac{\mathrm{n}}{\mathrm{k}}-1}\left|\mathrm{E}^{\epsilon}(\mathrm{x}, \mathrm{t})\right| \leq \frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{2(2 \pi)^{\frac{n}{2}} \mathrm{kc}^{\mathrm{n} / \mathrm{k}}} \frac{\Gamma\left(\frac{\mathrm{n}}{\mathrm{k}}\right) \Gamma\left(\frac{\mathrm{p}}{2}\right) \Gamma\left(\frac{2-\mathrm{n}}{2}\right)}{\Gamma\left(\frac{2-\mathrm{q}}{2}\right)}=\mathrm{K} . \\
\mathrm{E}^{\epsilon}(\mathrm{x}, \mathrm{t})=0\left(\epsilon^{-\mathrm{n} / \mathrm{k}^{+1}}\right)
\end{gathered}
$$

It follows that $\mathrm{E}(\mathrm{x}, \mathrm{t})=\mathrm{O}\left(\epsilon^{-\mathrm{n} / \mathrm{k}^{+1}}\right)$ as $\epsilon \rightarrow 0$. where $\mathrm{E}(\mathrm{x}, \mathrm{t})$ is an elementary solution.

Corollary 3.2.

$$
\begin{gather*}
|E| \leq \frac{2^{2-n} M(t)}{\pi^{\frac{n}{2}} \Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{q}{2}\right)}, \tag{3.11}\\
M(t)=\int_{0}^{\infty} \int_{0}^{s} \frac{\operatorname{sinc}\left(\sqrt{s^{2}-r^{2}}\right)^{k} t}{c\left(\sqrt{s^{2}-r^{2}}\right)^{k}} r^{p-1} s^{q-1} d r d s \tag{3.12}
\end{gather*}
$$

Proof: By applying the inverse of Fourier transform to (3.6), we obtain the solution $E(x, t)$ in the form

$$
\begin{gathered}
E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\mathcal{R}^{n}} e^{i(\xi, x)} \widehat{E}(\xi, t) d \xi \\
|E(x, t)| \leq \frac{1}{(2 \pi)^{n}} \int_{\mathcal{R}^{n}} \frac{\operatorname{sinc}\left(\sqrt{s^{2}-r^{2}}\right)^{k} t}{c\left(\sqrt{s^{2}-r^{2}}\right)^{k}} d \xi
\end{gathered}
$$

By changing to bipolar coordinates, we get

$$
|\mathrm{E}| \leq \frac{1}{(2 \pi)^{\mathrm{n}}} \int_{\mathcal{R}^{\mathrm{n}}} \frac{\operatorname{sinc}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}} \mathrm{t}}{\mathrm{c}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}}} \mathrm{r}^{\mathrm{p}-1} \mathrm{~s}^{\mathrm{q}-1} \operatorname{drdsd} \Omega_{\mathrm{p}} \mathrm{~d} \Omega_{\mathrm{q}}
$$

Where $\mathrm{d} \xi=\mathrm{r}^{\mathrm{p}-1} \mathrm{~s}^{\mathrm{q}-1} \mathrm{drdsd} \Omega_{\mathrm{p}} \mathrm{d} \Omega_{\mathrm{q}}, \mathrm{d} \Omega_{\mathrm{p}}$ and $\mathrm{d} \Omega_{\mathrm{q}}$ are the elements of surface area on the unit sphere in \mathcal{R}^{p} and \mathcal{R}^{q} respectively, we have

$$
|\mathrm{E}(\mathrm{x}, \mathrm{t})| \leq \frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{(2 \pi)^{\mathrm{n}}} \int_{0}^{\infty} \int_{0}^{\mathrm{s}} \frac{\operatorname{sinc}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}} \mathrm{t}}{\mathrm{c}\left(\sqrt{\mathrm{~s}^{2}-\mathrm{r}^{2}}\right)^{\mathrm{k}}} \mathrm{r}^{\mathrm{p}-1} \mathrm{~s}^{\mathrm{q}-1} \mathrm{drds}=\frac{\Omega_{\mathrm{p}} \Omega_{\mathrm{q}}}{(2 \pi)^{\mathrm{n}}} \mathrm{M}(\mathrm{t})
$$

where $\Omega_{\mathrm{p}}=\frac{2 \pi^{\frac{\mathrm{p}}{2}}}{\Gamma\left(\frac{\mathrm{p}}{2}\right)}$ and $\Omega_{\mathrm{q}}=\frac{2 \pi^{\frac{\mathrm{q}}{2}}}{\Gamma\left(\frac{\mathrm{q}}{2}\right)}$,
Thus

$$
|\mathrm{E}(\mathrm{x}, \mathrm{t})| \leq \frac{2^{2-\mathrm{n}} \mathrm{M}(\mathrm{t})}{\pi^{\frac{\mathrm{n}}{2}} \Gamma\left(\frac{\mathrm{p}}{2}\right) \Gamma\left(\frac{\mathrm{q}}{2}\right)}
$$

Theorem 3.3.given the nonlinear equation

$$
\begin{gather*}
\frac{\partial^{2}}{\partial t^{2}} u(x, t)+C^{2}(\square)^{k} u(x, t)=f(x, t, u(x, t)) \tag{3.13}\\
u(x, 0)=0 \text { and } \quad \frac{\partial u(x, 0)}{\partial t}=0
\end{gather*}
$$

for $(x, t) \in \mathcal{R}^{n} \mathrm{X}(0, \infty), k$ is a positive number and with the following conditions on u and f as follows:
(1) $u(x, t)$ is the space of function on $\mathcal{R}^{n} \mathrm{X}(0, \infty)$.
(2) f satisfies the Lipchitz condition,

$$
|f(x, t, u)-f(x, t, w)| \leq A|u-w|
$$

for some constant $A>0$.
(3) $\int_{0}^{\infty} \int_{\mathcal{R}^{n}}|f(x, t, u(x, t))| d x d t<\infty$ for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{R}^{n}$,

$$
0<t<\infty \text { and } u(x, t) \text { is a function on } \mathcal{R}^{n} \mathrm{X}(0, \infty) .
$$

Then we obtain

$$
\begin{equation*}
u(x, t)=E(x, t) * f(x, t, u(x, t)) \tag{3.14}
\end{equation*}
$$

as a unique solution of (3.13) for $x \in \Omega_{0}$ is a compact subset of \mathcal{R}^{n} and $0 \leq t \leq T$ with T is constant and $E(x, t)$ is an elementary solution defined by (3.3) and also $u(x, t)$ is bounded for any fixed $t>0$.
Proof: convolving both sides of (1.4) with E(x, t) , that is

$$
\mathrm{E}(\mathrm{x}, \mathrm{t}) *\left[\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \mathrm{u}(\mathrm{x}, \mathrm{t})+\mathrm{C}^{2}(\square)^{\mathrm{k}} \mathrm{u}(\mathrm{x}, \mathrm{t})\right]=\mathrm{E}(\mathrm{x}, \mathrm{t}) * \mathrm{f}(\mathrm{x}, \mathrm{t}, \mathrm{u}(\mathrm{x}, \mathrm{t}))
$$

Or

$$
\left[\frac{\partial^{2}}{\partial \mathrm{t}^{2}} \mathrm{E}(\mathrm{x}, \mathrm{t})+\mathrm{C}^{2}(\square)^{\mathrm{k}} \mathrm{E}(\mathrm{x}, \mathrm{t})\right] * \mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{E}(\mathrm{x}, \mathrm{t}) * \mathrm{f}(\mathrm{x}, \mathrm{t}, \mathrm{u}(\mathrm{x}, \mathrm{t}))
$$

So

$$
\delta(\mathrm{x}, \mathrm{t}) * \mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{E}(\mathrm{x}, \mathrm{t}) * \mathrm{f}(\mathrm{x}, \mathrm{t}, \mathrm{u}(\mathrm{x}, \mathrm{t}))
$$

Thus

$$
u(x, t)=E(x, t) * f(x, t, u(x, t))=\int_{-\infty}^{\infty} \int_{\mathcal{R}^{n}} E(r, s) f(x-r, t-s, u(x-r, t-s)) d r d s
$$

We next show that $\mathrm{u}(\mathrm{x}, \mathrm{t})$ is bounded on $\mathcal{R}^{\mathrm{n}} \mathrm{X}(0, \infty)$. Using (3.11), we have,

$$
\begin{gathered}
|u(x, t)| \leq \int_{-\infty}^{\infty} \int_{\mathcal{R}^{n}}|E(r, s)||f(x-r, t-s, u(x-r, t-s))| d r d s \\
\leq \frac{2^{2-n} M(t) N}{\pi^{\frac{n}{2}} \Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)}
\end{gathered}
$$

Where $M(t)$ was defined in (3.12) and

$$
N=\int_{-\infty}^{\infty} \int_{\mathcal{R}^{n}}|f(x-r, t-s, u(x-r, t-s))| d r d s
$$

Thus $u(x, t)$ is bounded on $\mathcal{R}^{n} X(0, \infty)$.
We next show that $u(x, t)$ is unique. Let $w(x, t)$ be another solution of (1.4), then

$$
\mathrm{w}(\mathrm{x}, \mathrm{t})=\mathrm{E}(\mathrm{x}, \mathrm{t}) * \mathrm{f}(\mathrm{x}, \mathrm{t}, \mathrm{w}(\mathrm{x}, \mathrm{t}))
$$

for $(\mathrm{x}, \mathrm{t}) \in \Omega_{0} \mathrm{X}(0, \mathrm{~T}]$ the compact subset of $\mathcal{R}^{\mathrm{n}} \mathrm{X}[0, \infty)$
and $E(x, t)$ is defined in (3.3). Now define

$$
\|\mathrm{u}(\mathrm{x}, \mathrm{t})\|=\underset{0<t \leq T}{\mathrm{x} \in \Omega_{0}}|\mathrm{u}(\mathrm{x}, \mathrm{t})|
$$

So ,

$$
\begin{gathered}
|u(x, t)-w(x, t)|=|E(x, t) * f(x, t, u(x, t))-E(x, t) * f(x, t, w(x, t))| \\
\leq \int_{-\infty}^{\infty} \int_{\mathcal{R}^{n}}|E(r, s)| \cdot|f(x-r, t-s, u(x-r, t-s))-f(x-r, t-s, w(x-r, t-s))| d r d s \\
\leq A|E(r, s)| \int_{-\infty}^{\infty} \int_{\mathcal{R}^{n}}|u(x-r, t-s)-w(x-r, t-s)| d r d s
\end{gathered}
$$

By the condition (2) on f, and for ($x, t) \in \Omega_{0} X(0, T]$
we have

$$
\begin{align*}
|\mathrm{u}-\mathrm{w}| & \leq \mathrm{A}|\mathrm{E}(\mathrm{r}, \mathrm{~s})|\|\mathrm{u}-\mathrm{w}\| \int_{0}^{\mathrm{T}} \mathrm{ds} \int_{\Omega_{0}} \mathrm{dr} \\
& =\operatorname{A}|\mathrm{E}(\mathrm{r}, \mathrm{~s})| \mathrm{TV}\left(\Omega_{0}\right)\|\mathrm{u}-\mathrm{w}\| \tag{3.15}
\end{align*}
$$

where $V\left(\Omega_{0}\right)$ is the volume of the surface on Ω_{0}. Choose
$\mathrm{A}<\frac{1}{|\mathrm{E}(\mathrm{r}, \mathrm{s})| \mathrm{TV}\left(\Omega_{0}\right)}$. Thus from (3.15)
$\|\mathrm{u}-\mathrm{w}\| \leq \mathrm{a}\|\mathrm{u}-\mathrm{w}\|$ where $\quad \alpha=\mathrm{A}|\mathrm{E}(\mathrm{r}, \mathrm{s})| \operatorname{TV}\left(\Omega_{0}\right)<1$.
It follows that $\|u-w\|=0$, thus $u=w$.
That is the solution u of (3.13) is unique for $(x, t) \in \Omega_{0} X(0, T]$ where $u(x, t)$ is defined by (3.14).

References

[1]G.B. Folland, Introduction to Partial Differential Equation, Princeton University Press, Princeton, New Jersey:P177(1995).
[2]G.Stritana, A.Kananthai, On the Generalized wave equation related to the beam equation, Journal of Mathematics Analysis and Approximation theory, Vol.1(1) p.23-29(2006).
[3]W.Satsanit, A.Kananthai, On the Ultra hyperbolic wave operator, Journal of Pure and Applied Mathematics (Bulgaria): volume 52, No.1, 2009, p117-p126.
[4] W.Satsanit, A.Kananthai, On the Ultra hyperbolic wave operator related to nonlinear wave equation, Int.J.Contemp.Math.Sciences, Vol.5, 2010, no.3, 103-116.
[5]K. Nolaopon and A. Kananthai Vol 17 No1 2004, 19-28, On the Ultra-hyperbolic Heat Kernel Related to the Spectrum. International Journal of Pure and Applied Mathematics.
[6]K. Nolaopon and A. Kananthai Science Asia 32 (2006):21-24, On the Generalized Ultra hyperbolic Heat Kernel Related to the Spectrum.
[7]K. Nolaopon and A. Kananthai Vol 28, N.2, pp. 157-166, 2009, On the Generalized Nonlinear Ultra -hyperbolic Heat Kernel Related to the Spectrum. Computational and Applied Mathematics.
[8]A.S.Abdel-Rady,S.Z.Rida and H.M.AboEl-Majd,On higher order ultra-hyperbolic kernel related to the spectrum, Journal of Applied mathematics \& Bioinformatics,vol.4,no.1,2014,89-101.
[9]L.C. Evans vol 19, Partial Differential Equations. American Mathematical Society.
[10]V.S.Vladimirov, Equations of Mathematical Physics,Mir Publishers Moscow,P104(1984)

