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Abstract. This paper studies the Graver’s optimality conditions for multi-objective non-linear 

integer programming problem based on Hilbert basis. Here, the result is generalized to include a 

fairly large class of multi-objective non-linear objective functions.  This extension provides in 

particular a link between the superadditivity of the difference objective functions and the Hilbert 

bases of conic subpartitions in 
n
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1. Introduction 

Several classes of non-linear integer programs can be successfully solved by 

different popular algorithms. There are branch and cut algorithms in which 

integrality restrictions and possibly other constraints are initially relaxed and 

gradually reintroduced within a branch and bound tree. Additional valid 

constraints can also be generated.  The optimality criteria for any non-linear 

multi-objective linear programming problem means to derive necessary and 

sufficient conditions for a feasible point to be optimal with respect to some given 

objective functions. Genuine multi-objective optimization shows the real inter-

relationships between the criteria and enables checking the correctness of the 

model. In one such criteria, one can systematically often devise a primal 

augmentation algorithm that starting with a feasible point either detects an 

improving direction yielding a new feasible point or terminates with a certificate 

that the current feasible point is optimal. Karush-Kuhn Tucker necessary and 

sufficient optimality conditions can be formed as a natural extension to single 

objective optimization for both differentiable and non-differentiable problems. In 
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linear programming, the simplex method is an example of an algorithm that 

makes use of the optimality condition for basic feasible solutions by the so called 

reduced cost criterion. 

To describe the optimality criteria in integer linear programming, some notation 

is required that we derive next.  For a given data nm
ZA


 and m

Zb  , we 

investigate a multi-objective integer program of the form 
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where the feasible region is described as  

}:{ bAxZxK
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Here n
Z


 is the set of nonnegative integers with n tuples. For a pointed rational 

polyhedral cone  K, )( KH denotes the unique Hilbert basis of K, i.e the 

inclusionwise minimal subset of the integer points in K such that every integer 

point in K can be represented as a non-negative integer combination of the 

elements in the set. Gordan gave a classical lemma in 1873, which gave the 

existence of a Hilbert basis and in 1931, Vander Corput showed that the Hilbert 

basis of a pointed cone K is uniquely determined. (Gordan, 1873; Vander Corput, 

1931) 

Resorting to the notion of Hilbert basis, we are prepared to derive optimality 

conditions for a multi-objective linear integer program of the form  
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Let nOOO
221

,..., , denote the partition of n
R  into all its orthants. Then 

 
j

n

j
OAxRxK  0: is a pointed polyhedral cone in n

R  for every  .2,...2,1
n

j   

Let 
j

H  be the unique minimal Hilbert basis of 
j

K .  

Murota et al. (2004) provided a link between the superadditivity of the difference 

objective functions and the Hilbert bases of conic subpartitions in n
R for single 

objective linear integer programming. We extend this link for the case of multi-

objective optimization. 

 

2. Graver’s Optimality Criteria ( Graver, 1975) 

A feasible point Kx  for a linear integer program is optimal with respect to 

linear objective function vector c   if and only if 
n

j

j

T
HhhC

2

1

     0



  s.t Khx   

Although this optimality criteria seems to be algorithmically intractable for large 

numbers of n  , (one would have to compute n
2 Hilbert bases) it still forms the 

basis of an algorithm that appears to be promising for integer programming. An 

exact primal augmentation algorithm was introduced for solving general linear 

integer programs and was proved that various versions of the algorithm are 

finite. (Haus, 2003)  It is a major concern to show that how the sub-problem of 

replacing a column can be accomplished effectively. More precisely, this integral 

basis method solves linear integer programs based on iteratively computing 

Hilbert basis of discrete relaxations of the underlying integer program and 

reformulating the problem in a higher dimensional space. This algorithm uses 

many advanced techniques that are not related to these optimality criteria. In 

abstract mathematical terms, however, it is an integer simplex algorithm based 

on Hilbert bases and inspired by Graver’s optimality criteria that we introduced 

above.  

In this paper, the optimality conditions are generalized for a multi-objective 

integer program with linear objective functions to families of integer programs 

with certain nonlinear objective functions
i

f . A key to obtain such a 

generalization is to define a chronic subpartition of the cones 
j

K that depends 
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on
i

f . Such partitions are refered as refined conic partition and denotd by 

  
rir

fK where r corresponds to the index assigned to each subcone in the conic 

subpartition. 

An efficient method has been proposed for solving two related nonlinear integer 

programming problems arising in series-parallel reliability systems. (Sun et al., 

2006) A parametric algorithm has been proposed for identifying the pareto set of 

a bi-objective integer program which is based on the weighted Chebyshev 

(Tchebycheff) scalarization, and its running time is asymptotically optimal. (Ted 

et al., 2006) 

The paper is formulated as follows: In the next section we classify the objective 

functions in different ways followed by a theorem showing their property. After 

that we generalize the optimality criteria stated by Graver to multi-objective 

integer programs with nonlinear objective functions in form of two theorems. In 

the last section, conclusion is drawn. 

 

3. Classification of Objective Functions 

Now, we generalize the optimality criteria stated by Graver to a multi-objective 

integer program with nonlinear objective functions: 
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where each RRf
n

i
: are nonlinear functions and as before  

}:{ bAxZxK
n




with nm
ZA


  and m

Zb  . 

Let  
jj

K be the family of polyhedral cones  
j

n

j
OAxRxK  0: where 

j
O is the 

th
j orthant with  .2,...2,1

n
j  With reference to the given objective functions 

i
f , we 

consider a further partition of 
j

K into polyhedral cones to obtain a refined conic 

partition say   
rir

fK of  0:  AxRx
n . By construction each  

ir
fK is contained 
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in some 
j

K . The refined conic partition   
rir

fK  will be used in expressing a local 

optimality criterion for 
i

f mi ,...2,1  

Now we introduce three classes of objective functions 
21

, FF and 
3

F as follows: 

 
1

F denotes the family of functions 
i

f  that can be represented as  
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For some positive semidefinite symmetric matrix 
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 , where 
nn

i
Q


 is the 

set of all   nn   positive semidefinite symmetric matrices, vector 
n

ii
Qd  and 

scalar Ra
i
 , mi ,...2,1  
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F denotes the family of functions 
i

f that can be represented as  

   xcxf
T

iq

s

q

iqi 




1

                             …(4) 

For some integer s , vectors  sqQc
nn

iiq
,...2,1, 


mi ,...2,1 , and convex 

functions  sqRR
iq

,...2,1,:   

 
3

F denotes the family of functions 
i

f that admit a refined conic 

partition   
rir

fK , s.t 

       
2121

hxfhxfxfhhxf
iiii

                                      …(5) 

For every Kx  and every n
Zhh 

21
, with    

ir
fKhh 

21
, for some r and 

Khhx 
21

 

Note that Khhx 
21

implies that Khx 
1

and Khx 
2

. And (5) is equivalent 

to            ][][
2121

xfhxfxfhxfxfhhxf
iiiiii

  

Which is the superadditivity of  hg
ix

 i.e 

     
2121

hghghhg
ixixix

   

where      xfhxfhg
iiix

  

within a subset of each cone  
ir

fK . 

Theorem 1. 

321
KKK   

Proof: 
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To prove 
21

KK  , let 
1

Kf
i
 , mi ,...2,1 . Then 
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iii
adQ  and    ,  

For any 
i

Q , there exists a factorization: 

T
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BDBQ   

Where  
iniii

diagD  ,...,
21

  with 0,...,
21


inii

 and nn

ii
QB


 is an nn   matrix; e.g. 

the T
LDL factorization with pivoting gives such a factorization. (Golub, 1996). 

Thus  
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Hence 
21

KK  . 

Now it remains to prove that 
32

KK  . 

To prove this, let 
2

Kf
i
 Then    xcxf

T

iq

s

q

iqi 




1

  for some vectors  sqc
iq

2,1    

and convex functions  sq
iq

2,1   . Then we construct a refined conic partition 

  
rir

fK  according to the signs of   sqxc
T

iq
2,1   . 

 

4. Generalized Optimality Criteria 

Our main theorem states that the pareto optimality is guaranteed by a local 

optimality for objective functions in the class 
3

K . The local optimality is defined 
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with reference to the refined conic partition   
rir

fK for a given objective function  

3
Kf

i
  .        

Theorem 2. 

For any function  
3

Kf
i
  with the refined conic partition   

rir
fK and a feasible 

point Kx 
0 , the following statement holds: 

 0
x  is optimal if and only if                                                                                                                                                                                                                                                                                                                                                                                                   

   00
xfhxf

ii
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r
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fKHh   such that Khx 
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Proof: 

It is sufficient to prove the “only if” part. For all Kx   there exists r such that 
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Where the first inequality is by (3) and the second is by the assumed local 

optimality. 

The property of refining Hilbert bases does not seem to apply to arbitrary convex 

functions. This means that our optimality criterion does not apply to arbitrary 

convex functions. The above theorem can be extended for class of functions 

4
K given below and the proof of this extension is obvious. 

Theorem 3.  

Let 
4

K be the class of functions that can be obtained from some function in 

3
K through a scale change of the function values. That is a function belongs to 

4
K if and only if it can be represented as    xgxf

iii
  with strictly increasing 

functions RR
i

:  and functions 
3

Kg
i
 . Then it is easy to see that the 

optimality criteria in theorem 2. is valid for 
4

Kf
i
 . 
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5. Conclusion 

 Classification of objective functions is possible. 

 The global optimality is guaranteed by a local optimality for objective 

functions in the class 
3

K . 

 Optimality criteria in theorem 2 is valid for 
4

Kf
i
 . 
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