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Radial Solutions of the Schrodinger’s Equation with Superposition of Yukawa and 

Manning-Rosen Applying the Nikiforov-Uvarov Method 

 

Abstract 

The solutions of the Schrӧdinger equation with Manning-Rosen plus Yukawa potential 

(MRYP) have been presented using the Pekeris-like approximation of the Coulomb term 

and parametric Nikiforov-Uvarov (NU) method. The bound state energy eigenvalues and 

the corresponding un-normalized eigenfunctions are obtained regarding Jacobi 

polynomials. Also, Yukawa, Manning-Rosen, and Coulomb potentials have been 

recovered from the mixed potential, and their eigenvalues obtained.  

 

Keywords: Schrӧdinger equation, Manning-Rosen potential, Yukawa potential, Pekeris-

like approximation, ParametricNikiforov-Uvarov method, Jacobi polynomials 
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1 INTRODUCTION 

In quantum mechanics, one of the exciting problems is to obtain exact solutions of the 

Schrӧdinger equation. To do this, a real potential is customarily chosen to derive the 

energy eigenvalues and the eigenfunctions of the Schrӧdinger equation (Magu et al., 

2017). These solutions describe the particle dynamics in non-relativistic quantum 

mechanics (Antia et al., 2015). Several authors have studied the bound states of the 

Schrӧdinger equation using different potentials and methods. Some of these potentials 

play significant roles in many fields of Physics such as Molecular Physics, Solid State and 

Chemical Physics (Ita et al., 2016). The Manning-Rosen potential has been intensely 

studied and applied in quantum systems and Yukawa potential, and its classes have been 

considered in Schrodinger formalism (Louis et al., 2016). 

 The purpose of the present paper is to solve the Schrӧdinger equation for the 

mixed potential MRYP using the parametric NU method. The paper is organized as 

follows: After a brief introduction in section 1, the NU method is reviewed in section 2. 

In section 3, we solve the radial Schrӧdinger equation using the NU method. Finally, we 

discuss our results in section 4and a brief conclusion is then advanced in section 5. 

 

2 NIKIFOROV-UVAROV METHOD  

The Nikiforov-Uvarov (NU) method is based on the solutions of a generalized 

second-order linear differential equation with special orthogonal functions. The 

Schrӧdinger equation and Schrӧdinger-like equations of the type as: 

𝜓′′(𝑟) + [𝐸 − 𝑉(𝑟)]𝜓(𝑟) = 0,        (1)  

can be solved by this method. To do this equation (1) is transformed into equation of 

hypergeometric type with appropriate coordinate transformation 𝑠 = 𝑠(𝑟) to get 

𝜓′′(𝑠) +
𝜏̅(𝑠)

𝜎(𝑠)
𝜓′(𝑠) +

𝜎̅(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0,       (2) 
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To solve equation (2) we can use the parametric NU method. The parametric 

generalization of the NU method is expressed by the generalized hypergeometric type 

equation [19] 

𝜓′′(𝑠) +
(𝑐1−𝑐2𝑠)

𝑠(1−𝑐3𝑠)
𝜓′(𝑠) +

1

𝑠2(1−𝑐3𝑠)2
[−𝜖1𝑠2 + 𝜖2𝑠 − 𝜖3]𝜓(𝑠) = 0,     (3)                                                               

where𝜎(𝑠) and 𝜎(𝑠) are polynomials atmost second degree, and 𝜏̅(𝑠) is a first degree 

polynomial. The eigenfunctions (equation 4) and corresponding eigenvalues (equation 5) 

to the equation become 

𝜓(𝑠) = 𝑁𝑛𝑠𝑐12(1 − 𝑐3𝑠)
−𝑐12−

𝑐13
𝑐3 𝑃𝑛

(𝑐10−1,
𝑐11
𝑐3

−𝑐10−1)
(1 − 2𝑐3𝑠),      (4) 

(𝑐2 − 𝑐3)𝑛 + 𝑐3𝑛2 − (2𝑛 + 1)𝑐5 + (2𝑛 + 1)(√𝑐9 + 𝑐3√𝑐8) + 𝑐7 + 2𝑐3𝑐8 + 2√𝑐8𝑐9 = 0, (5) 

Where 

𝑐4 =
1

2
(1 − 𝑐1), 𝑐5 =

1

2
(𝑐2 − 2𝑐3), 𝑐6 = 𝑐5

2 + 𝜖1, 𝑐7 = 2𝑐4𝑐5 − 𝜖2, 𝑐8 = 𝑐4
2 + 𝜖3 , 𝑐9 = 𝑐3𝑐7 +

𝑐2
2𝑐8 + 𝑐6,  𝑐10 = 𝑐1 + 2𝑐4 + 2√𝑐8, 𝑐11 = 𝑐2 − 2𝑐5 + 2(√𝑐9 + 𝑐3√𝑐8) ,𝑐12 = 𝑐4 + √𝑐8, 

𝑐13 = 𝑐5 − (√𝑐9 + 𝑐3√𝑐8),            (6)                                                          

𝑁𝑛is the normalization constant and 𝑃𝑛
(𝛼,𝛽)are the Jacobi polynomials. 

 

3. SOLUTIONS OF THE RADIAL PART OF SCHRÖDINGER EQUATION WITH 

MRYP POTENTIAL 

 The radial Schrӧdinger equation (for which 𝑙 ≠ 0) is given as  

𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2 +
2𝜇

ћ2 [𝐸 − 𝑉(𝑟) −
𝜆ћ2

2𝜇𝑟2] 𝑅𝑛𝑙(𝑟),       (7) 

Where 𝜆 = 𝑙(𝑙 + 1) and 𝑉(𝑟) is the potential energy function. However in this paper we 

solving for the s-wave Schrodinger equation for which 𝑙 = 0. Thus, the Manning-Rosen 

potential (MRP) is given as (Louis et al., 2016) 

𝑉(𝑟) = − [
𝐶𝑒−∝𝑟+𝐷𝑒−2∝𝑟

(1−𝑒−∝𝑟)2
]         (8) 

The Yukawa potential (YP) is given as (Antia et al., 2015) 

𝑉(𝑟) = −
𝑉𝑜𝑒−∝𝑟

𝑟
,          (9) 
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where 𝑉0 is the potential depth of the YP and 𝛼 is an adjustable positive parameter. In 

equation (8) 

𝐶and 𝐷 are constants. The sum of these potentials known as MRYP is given as 

𝑉(𝑟) = − [
𝐶𝑒−∝𝑟+𝐷𝑒−2∝𝑟

(1−𝑒−∝𝑟)2 ] −
𝑉0𝑒−∝𝑟

𝑟
        (10) 

Making the transformation 𝑠 = 𝑒−𝛼𝑟equation (10) becomes 

𝑉(𝑠) = − [
𝐶𝑆+𝐷𝑆2

(1−𝑆)2
] −

∝𝑉0𝑆

1−𝑆
         (11) 

Again, applying the transformation 𝑠 = 𝑒−𝛼𝑟  to get the form that NU method is 

applicable, equation (7) gives a generalized hypergeometric-type equation as 

𝑑2𝑅(𝑠)

𝑑𝑠2 +
(1−𝑠)

(1−𝑠)𝑠

𝑑𝑅(𝑠)

𝑑𝑠
+

1

(1−𝑠)2𝑠2
[−(𝛽2 − 𝐹 + 𝐵)𝑠2 + (2𝛽2 + 𝐴 + 𝐵)𝑠 − (𝛽2)]𝑅(𝑠) = 0, (12) 

Where 

−𝛽2 =
2𝜇𝐸

𝛼2ћ2 , 𝐴 =
2𝜇𝐶

𝛼2ћ2 , 𝐵 =
2𝜇𝑉0

𝛼ћ2 , 𝐹 =
2𝜇𝐷

𝛼2ћ2 ,
1

𝑟
≈

∝

(1−𝑒−∝𝑟)
≈

∝

(1−𝑆)
,    (13)  

Comparing equation (12) with equation (3) yields the following parameters 

𝑐1 = 𝑐2 = 𝑐3 = 1, 𝑐4 = 0, 𝑐5 = −
1

2
, 𝑐6 =

1

4
+ 𝛽2 + 𝐵 − 𝐹, 𝑐7 = −2𝛽2 − 𝐴 − 𝐵, 𝑐8 = 𝛽2, 𝑐9 =

1

4
− (𝐴 + 𝐹), 𝑐10 = 1 + 2√𝛽2, 𝑐11 = 2 + 2 (√

1

4
− 𝐴 − 𝐹 + √𝛽2) , 𝑐12 = √𝛽2, 𝑐13 = −

1

2
−

(√
1

4
− 𝐴 − 𝐹 + √𝛽2) , 𝜖1 = 𝛽2 + 𝐵 − 𝐹, 𝜖2 = 2𝛽2 + 𝐴 + 𝐵, 𝜖3 = 𝛽2,   (14) 

Now using equations (5), (13) and (14) we obtain the energy eigenspectrum of the MRYP 

as 

𝛽2 = [
𝐴+𝐵−(𝑛2+𝑛+

1

2
)−(2𝑛+1)√

1

4
−𝐴−𝐹

(2𝑛+1)+2√
1

4
−𝐴−𝐹

]

2

,       (15) 

Equation (15) can be solved explicitly and the energy eigen spectrum of MRYP becomes 

 

𝐸 = −
𝛼2ћ2

2𝜇
{[

2𝜇𝐶

∝2ћ2+
2𝜇𝑉0
𝛼ћ2 −(𝑛2+𝑛+

1

2
)−(2𝑛+1)√

1

4
−

2𝜇𝐶

∝2ћ2−
2𝜇𝐷

𝛼2ћ2

(2𝑛+1)+2√
1

4
−

2𝜇𝐶

∝2ћ2−
2𝜇𝐷

𝛼2ћ2

]

2

},     (16) 
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We now calculate the radial wave function of the MRYP as follows 

The weight function 𝜌(𝑠) is given as [19] 

𝜌(𝑠) = 𝑠𝑐10−1(1 − 𝑐3𝑠)
𝑐11
𝑐3

−𝑐10−1
,        (17) 

Using equation (14) we get the weight function as 

𝜌(𝑠) = 𝑠𝑈(1 − 𝑠)𝑉,          (18) 

Where 𝑈 = 2√𝛽2 and 𝑉 = 2√
1

4
− 𝐴 − 𝐹 

Also, we obtain the wave function 𝜒(𝑠) as [19] 

𝜒(𝑠) = 𝑃𝑛

𝑐10−1,
𝑐11
𝑐3

−𝑐10−1
(1 − 2𝑐3𝑠).        (19) 

Using equation (14) we get the function χ(s) as 

𝜒(𝑠) = 𝑃𝑛
(𝑈,𝑉)(1 − 2𝑠).         (20) 

Where 𝑃𝑛
(𝑈,𝑉)

 are Jacobi polynomials 

Lastly, 

𝜑(𝑠) = 𝑠𝑐12(1 − 𝑐3𝑠)
−𝑐12−

𝑐13
𝑐3 .        (21) 

And using equation (14) we get 

𝜑(𝑠) = 𝑠
𝑈

2⁄ (1 − 𝑠)
𝑉−1

2⁄ .         (22) 

We then obtain the radial wave function from the equation [19] 

𝑅𝑛(𝑠) = 𝑁𝑛𝜑(𝑠)𝜒𝑛(𝑠).          (23) 

As 

𝑅𝑛(𝑠) = 𝑁𝑛𝑠
𝑈

2⁄ (1 − 𝑠)
(𝑉−1)

2⁄ 𝑃𝑛
(𝑈,𝑉)(1 − 2𝑠).       (24) 

Where 𝑛 is a positive integer and 𝑁𝑛 is the normalization constant.  

 

4 DISCUSSION 

We have solved the radial Schrӧdinger equation and obtained the energy eigenvalues for 

the Manning-Rosen plus Yukawa potential (MRYP) in equation (16).  

The following cases are considered: 
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Case 1: If 𝐶 = 𝐷 = 0  in equation (10), the potential turns back into the Yukawa 

potential and equation (16) yields the energy eigen values of the Yukawa potential as 

𝐸 = −
ћ2

2𝜇
[

2𝜇𝑉0
ћ2 −∝2(𝑛+1)2

2(𝑛+1)
]

2

,         (25) 

Equation (25) is similar to equation (30) obtained by Antia et al., 2015  

 

Case 2: If ∝→ 0, 𝑉0 = 𝑍𝑒2 in equation (25), the energy eigen values for Coulomb potential 

becomes 

 E = −
𝑍2𝑒4𝜇

2ћ2𝑛′2           (26) 

Where 𝑛′ = 𝑛 + 1 in this case. 

 

 Case 3: If 𝑉0 = 0 the potential in equation (10) yields the Manning-Rosen potential 

with energy eigen values given as 

𝐸 = −
𝛼2ћ2

2𝜇
{[

2𝜇𝐶

∝2ћ2−(𝑛2+𝑛+
1

2
)−(2𝑛+1)√

1

4
−

2𝜇𝐶

∝2ћ2−
2𝜇𝐷

𝛼2ћ2

(2𝑛+1)+2√
1

4
−

2𝜇𝐶

∝2ћ2−
2𝜇𝐷

𝛼2ћ2

]

2

}      (27) 

Eq. (27) is also similar to Manning-Rosen potential bound state energy obtained by Louis 

et al., 2016 

 

5 CONCLUSIONS: 

We have obtained the energy eigenvalues and the corresponding un-normalized wave 

function using the parametric NU method for the Schrӧdinger equation with MRYP. 

Special cases of the potential have also been considered. The results of the numerical 

analysis are shown in Table 1. The potential decreases with an increase in screening 

parameter α. Furthermore, the negative value of the eigenenergy states depicts that the 

eigensolutions are bound. This work can be extended for the spectroscopic study of atom 

and molecules. 
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Table 1 

Energy eigenvalues 𝑬(𝒆𝑽) of the MRYP potential for ђ=µ=1, 𝑽𝟎 = 𝟎. 𝟐, C = -0.1, D = 0.1 

with different α values. 

 

𝒏 𝜶 =  𝟎. 𝟎𝟏 𝜶 =  𝟎. 𝟏 𝜶 =  𝟐 𝜶 =  𝟓 

𝟏 

𝟐 

𝟑 

𝟒 

𝟓 

𝟔 

𝟕 

−12.05405

− 5.384668 

−3.050450

− 1.970112 

−1.383338 

−1.029612 

−0.800110 

−0.1249999

− 0.086805 

−0.08

− 0.0840500 

−0.093889

− 0.107780 

−0.1250000 

−1.852812

− 4.351249

− 7.850703 

−12.350450 

−17.850312

− 24.350229

− 31.850175 

−12.05405

− 27.67680

− 49.551012 

−77.675648

− 112.050449

− 152.675330 

−199.550253 

 

 

 

 


