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Abstract: The current study focuses on simple methods of quantifying vehicular drag and rolling 

resistance coefficients. It highlights the relationship between the drag coefficients (CD) of two models 

of varying scales but sharing geometric and dynamic similitude and also describe a simple, small 

scale and low cost, yet comprehensive approach to quantifying the automotive coefficient of Rolling 

Resistance or Friction (Crr), also known as the Rolling Resistance Coefficient (or RRC). Applying 

principles of fluid mechanics, especially Bernoulli’s law and by scaling models using Reynold’s 

Number (Re) and the Buckingham Pi Theorem at varying velocities u0, drag forces, the drag forces FD 

were supplemented by conducting simple wind tunnel tests. Real drag analysis show a 10% deviation 

from the literature data, contributed to negligence of the governing flow equations of Navier Stokes, 

such as modeling principles relative to turbulence. Some computational flow modeling principles 

were briefly discussed. For rolling friction coefficient method, coast down and dynamic speed trap 

tests of scaled models were conducted under varying body weighted conditions to converge on the 

value, where a high speed camera monitored the motion of the vehicle. The experiment produced 

different equations of motion which were then solved analytically by numerical analysis techniques 

to compute the rolling friction coefficient. Initial guesses in the least square optimization iterations 

provided coefficient values where drag forces were normalized (Crr of 0.0116). Studies were compared 

with literature and direct scaling abilities were attributed for quantifying the normalized value.  
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Introduction 

 

For years, the aerospace and automotive industries have been enhancing designs 

to lower the overall drag coefficient by streamlining the exterior panels and 

choosing different materials. Minimizing losses to drag and other external 

frictional forces, the vehicle requires less power to reach its relative peak. In 

other words, reducing certain parameters optimizes the overall vehicle fuel 

efficiency.    

 

Simple wind tunnels use elementary principles of fluid mechanics to study lift 

and drag forces on a solid body. A beam balance or strain gauge typically 

measures changes in elongation at the base of the body in a static setting. In most 

real analysis of drag forces, however, certain error is bound to occur for a complex 

body. This is especially true in the case of vehicles. Force fluctuations occur 

during the rotation of wheels when it is in direct contact with the ground. 

Although these differences are usually neglected in simplified experiments, they 

are crucial in understanding the behavior of a complex body. Computation Fluid 

Dynamics (CFD) software can successfully create a virtual setting with real 

parameters and considerations, thereby eliminating some errors to a degree.  

 

In recent years, the automotive industry has conducted research on finding and 

minimizing external forces hindering a car's motion. Better tire designs and 

threading techniques are becoming prevalent design considerations as 

manufacturers are now shifting focus from performance towards efficiency, striving 

to power more engine energy to the wheels and incurring lesser losses in the process. 

Almost always a dynamic testing approach is necessary for converging on the 

rolling friction coefficient. Coast down testing is a viable experiment conducted 

universally to observe the effects of rolling friction in moving bodies. In these tests, 

power from the engine is cut at a certain point, after which mostly external forces 
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work to slow down the body and ultimately bring the body to rest over a certain 

period of time. This distance and time period is then observed, monitored and 

numerically treated with fundamental vehicular motion laws of classical mechanics. 

With known parameters, advanced numerical analysis is then conducted on the 

results to find pertinent information key to the vehicle's performance. Although 

overall body mass is a great factor in reducing wheel friction, rolling resistance 

coefficient can be reduced to optimize a vehicle's performance and fuel efficiency 

(Ehsani et al 2009). In recent times, scientists and researchers have begun testing 

the automobile computationally to find important design parameters. The tests 

again include Computational Fluid Dynamics  studies for fluid flow around an 

object (Hussain et al 2010) such as the vehicle exterior or even modeling and testing 

exterior panels using Finite Element Analysis (FEA) (Rimy and Faieza, 2010). Tires 

can also be constructed and tested to analyze the relationship between wheel design 

and the coefficient of rolling resistance in FEA with 2D and 3D modeling (Ze et al 

2010) 

 

The present investigation, however, is to introduce a coast down technique which 

further utilizes a speed trap system by high speed imaging processes in a 

dynamic motion by a scaled model. Due to geometric similitude principles, a 

1:10th scale model of a 1974 Model Volkswagen Super beetle will be used. Entry 

and exit points will be identified at which the vehicle will pass during two 

different separate points of time, and the time required to cover the distance in 

between will be numerically computed from video data. The overall body weight 

will be varied throughout the experiment to generate multiple equation models 

which will be solved analytically to zero in on the constant after utilizing 

elementary numerical least square optimization techniques. There exists other 

coast-down technique where speed and deceleration values in tests are effectively 

eliminated and is based on the time–distance function derived by new solutions of 

the coast-down equation that is free from speed and deceleration. This enables a 

considerable group of measurement error sources to be eliminated and the coast-

file:///C:/Users/sasg28.UMKC-USERS.001/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/K7MB9FRX/revised_10.doc
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down technique sensitivity to be increased; so the small drag alterations due to 

the changes in vehicle aerodynamic configuration or tire parameters, such as load, 

inflation pressure and temperature, can be detected (Petrushov 1998). 

 

In this study, the real of drag forces will be highlighted, culminating in the 

measurement of the drag coefficient of a certain vehicle, the 1970s VW Super Beetle. 

Comparing results from available manufacturer’s literature, the reasons for 

inconsistencies can be observed. Principles of Similitude shall be applied to scale 

the actual full sized car down to a 1:10 scale model. Due to similarity in overall form, 

Reynolds Number (Re) will give the scaling factor for the effective velocities. The 

drag coefficient CD which is a directly proportional constant to drag forces can be 

reduced by minimizing the frontal area of a body and deflecting airflow away from 

sudden, sharp or hollow contours. Drag coefficient is the same for two bodies of 

exact shape, but different sizes. In other words, scaling does not affect a model’s 

coefficient of drag as long as the model and the full scale object are of the same 

exact shape.  Pixelizations can be used to quantify the respective vehicles’ frontal 

area.  

 

Vehicle motion is caused by axle rotation which is in turn powered by the 

combustion in the automobile engine. As the power is cut from the source, the 

vehicle comes to rest due to internal friction, aerodynamic drag and rolling 

resistance at the wheels. The external frictional forces at the wheels are directly 

depended on the total vehicle weight, the traveling velocity and a proportional 

constant called the coefficient of rolling friction. This constant, denoted in this study 

as Crr, depends on the texture and structure of the road, vehicle weight and the 

wheel dimensions, among other factors. Frictional forces caused by air movement 

over the car are called drag forces. (Hibbeler 2007) 

 

Experimental Design: Setup and Methodology 
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The vehicle body is first constructed for the drag test. A resin material is mixed 

under guided conditions and hardened at room temperature after letting it cure 

for 3 hours. Epoxy or polyepoxide, a thermosetting polymer is formed from the 

reaction of an epoxide "resin" with polyamine "hardener". As such, this epoxy is 

called the two part resin (the resin being a powder and the hardener being a 

liquid). This material will be applied to the model to provide a desired consistency 

and is very similar to the smoothness of convention sheet metal or fiber glass, 

which the vehicle exterior is made out of. Vacuum forming was initially used to 

produce a shell of the vehicle on which the material was poured. Finally, the 

model is secured to the wind chamber of a wind tunnel by a metal bracket (See 

Figure 1).  

 

An industrial fan provides air that travels over the static body. In principle, this 

effect is the equivalent of the body moving through the air. The air pushes on the 

body while traveling around the tested object causing drag forces from above and 

lift forces from below. The air flow then travels into a pipe and pushes fluids up 

the venture meter tube and fluctuates the fluid height (measured as Δh). The 

elongation readings, caused by the flow of air on the body are sent to the control 

panel of a data acquisition software through a transducer. From these readings, 

corresponding drag forces are measured. Figure 2 shows the setup of equipment.  

 

http://en.wikipedia.org/wiki/Thermosetting_polymer
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Epoxide
http://en.wikipedia.org/wiki/Polyamine
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(a) 

 

 

 

(b) 

 

Figure 1: a – b. Wind Tunnel Experimental Setup 
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Figure 2: Experimental Setup for speed trap tests 

 

For the rolling resistance tests, asphalt is chosen as the terrain for all the tests to 

imitate actual driving conditions for the coefficient. A scaled wireless model is 

used to run the tests. Due to principles of the Reynolds Number (Re) and 

Similitude, the following assumptions were made to extrapolate to full scale 

results. To scale the velocities for the car and the model, we use principles of 

geometric similitude by establishing a tenfold model to scale relationship. 

 

We can establish the relationship between the model and the full scale car by the 

respective Reynolds numbers. Hence, 
sca led fu ll

u D u D 

 

   
   

   

where the vehicle 

velocity ratio is given by 

fu ll fu ll sc a le d

sc a le d fu ll

sc a le d sc a le d fu ll

D
u u

D

 

 

    
          

     

, or 1 0
sc a le d fu ll

u u  ; 

This means that for the scaled model to experience the same magnitude of drag 

forces as  full scaled vehicle, the wind speeds it needs to run in would need to be 

10 times the wind speed needed for the actual car. 
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The entrance and the exit point are spaced 103.5 inches (denoted in calculations as 

Xtrap) away from each other. A 0.333 fps (frames per second) high definition camera 

was placed at the midpoint of the track to monitor the distances traveled with unit 

time. X1 and X2 refers to the exit first and second locations, while L2 and L1 refer to 

the entrance first and second locations respectively. SCcent and SCex were 

dimensionless scaling coefficients incorporated in the expressions to account for the 

discrepancies in measurements due to the spacing of the camera and the running 

track. See Figure 3.  

 

Entrance and exit velocities respectively were calculated as  

2 1

e n t

fp s

X Xd x
V

d t t


 


 and 2 1

e x

fp s

L Ld l
V

d t t


 


 (where 

fp s
t = time lapse computed from the 

camera frames) 

from where we say the mean velocity,  
1

2
ex en t

V V V   from which the acceleration a,  

or 0
V

t




was numerically computed with Δt being the time required for the car to 

completely clear the distance.  

The average acceleration ex en t
V Vd v

a
d t t


 


 (where

tra p
X

t
V

  ) 

 

Mathematical Analysis 

 

Drag forces (FD) of a car are depended on  CD, the coefficient of drag for the 

certain shape, ρair, the mass density of the fluid through which the body is 

traveling, Afrontal or the vehicle’s effective frontal area and most importantly u, the 

mean velocity of the car. Afrontal is calculated both manually through photo 

pixelization and computationally through taking a section view and measuring 

the enclosed area in a 3d CAD software. The value of Afrontal was 0.0221 m2 
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(Sunny 2011a).  

 

Using the algorithms of the Pi Theorem, the drag forces which depend on the five 

above parameters; or 
, 0

( , , , ) 0
x D fr o n ta l a ir

f F u A v   can be reduced using two 

dimensionless parameters culminating in the Reynolds number (Buckingham, 

1914).  

Where R e
u A

v
 and the Coefficient of Drag (CD) where 

21

2

D

D

a ir fro n ta l

F
C

A u

  

Hence the function of five variables cane be effectively reduced by introducing a 

function of only two variables; where fy is some function of two arguments    

2

, 0
1

2

D

y

a ir fro n ta l

F u A
f

A u




 

 
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 

 

Since drag force FD is the only unknown above, it is 

possible to say 

21

2

D

z

a ir fr o n ta l

F u A
f

A u




 
  

 
 

 or 21
.

2
D z a ir fro n ta l

u A
F f A u



   
     

  

and then 

21

2
D D a ir fro n ta l

F C A u  

Historically, scientists and engineers, used various other methods to quantify the 

value using a velocity depended expression and a model that neglected the latter, i.e. 

it was not adjusted for velocity (Peck 1859). These expressions can be said to be 

r o ll in g r r c a r
F C W which can be characterized for a slow rigid (minimum deformation) 

wheel as:  

d e p th

rr

w h e e l

z
C

d
 . A length dimension rolling friction coefficient was also introduced 

as c a r r r

r o l l in g

w h e e l

W C
F

r
 . 
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These simple models however were used before complex expressions were 

experimentally developed and do not directly correlate to recent data, but simply 

shows the relationships between the cars weight, the corresponding rolling 

frictional forces it experiences and the size of its wheels. It mainly leaves out any 

consideration for the travelling velocity. In effect, the rolling friction coefficient of a 

metal wheel of the same dimensions as a rubber wheel with equal loading and same 

rolling friction will give the same rolling resistance value. In this study, velocity 

was taken into consideration.  

 

Then, 
S upp lied

F
t

m a  (where mt was varied by adding weights) and also 

ro llin g  re s is tan ce F =  rrC W V  (Crr is the coefficient of rolling resistance; which is depended on 

wheel and road factors, among other conditions) where the weight, 
t

W = m g ; a 

simplified force balance on the vehicle body showed 

S u p p lie d D ra g R o llin g R e s is ta n c e
F F F F   where 

2

 

1
=  

2
fro n ta l

D aD g ira r
C AF V  

This model is built on the assumption that during coastdown, drag and rolling 

friction forces are all that acts on the car. Another assumption pertaining to 

automotive drag would be neglecting any headwind or tailwind to the car. Total 

body weight was fluctuated with varying weights, to cause changes in friction forces 

thereby keeping drag forces relatively constant. Then numerical analysis techniques 

will then be used to converge on the coefficient of rolling resistance, by treating the 

drag coefficient as an unknown and then as neglecting it altogether given the low 

speeds of the speed trap tests. Lastly, drag coefficient of the same car was found 

experimentally from the wind tunnel analysis and was substituted to the simplified 

equations of motions during the tests. At coast down, i.e. when the engine is not 

providing power to the axles any longer, the body travels with the initial 

momentum and ultimately comes to a stop exclusively due to drag and friction 

forces slowing the car down, i.e the forces involved are, again: 
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2

 

1
=  

2
fro n ta l

D aD g ira r
C AF V  and  = rr

carro lling
C WF V respectively. Both forces, FDrag and Frolling 

are depended on the velocity of the travelling car. To fully quantify FDrag, the drag 

coefficient CD for the vehicle needs to be experimentally quantified, and any 

headwind or tailwind would produce an erroneous coefficient value if they are not 

added or subtracted from the velocity. Although at speeds traveled by the car 

during these speed trap tests, drag forces are effectively negligible. In any case, for 

better convergence on the coefficients of rolling friction, using drag coefficients 

would eliminate margins of error within the equations of motion (force balance and 

mechanics equations).  

 

The speed would be noted on the venture meter height readings or H (cm) and the 

changes in height (Δh) will correspond to changes in velocities u (mph). There 

exists a direct method of establishing a relationship between height readings and 

wind tunnel air speeds. It is now known universally as the Bernoulli’s Principle 

(Bernoulli 2004). 

 

The work-energy theorem can be used to derive Bernoulli’s principle (Tipler 2007).  

k
W E  i.e the change in the kinetic energy Ek of the system is equal to the net 

work W done on the system; the velocity is hence derived as  

2u g h  or more specifically (Sunny 2011b), taking into account the fact that 

the fluid is air, velocity is  

2

a ir

S G g h
u






  

 

For drag considerations, in a real wind tunnel, the velocity u can be further treated 

with the decomposition technique as follows, ( , , , ) ( , , ) ( , , , )u x y z t u x y z u x y z t   where 

 denotes the time average of  (often called the steady component), and u   the 

fluctuating part, commonly known as perturbations. For stationary and 

http://en.wikipedia.org/wiki/Work_%28physics%29
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incompressible Newtonian fluids, the equations can be written in Einstein notation 

as:  

j i ji

i i j i j

j j j i

u u uu
f p u u

x x x x
    

 
   

       
       

 

 

The properties of Reynolds operators are useful in the derivation of the RANS 

equations. Using these properties, the Navier–Stokes equations of motion, 

expressed in tensor notation, are (for an incompressible Newtonian fluid): 

0
i

i

u

x





 Hence: 

2
1

i i i

j i

j i j j

u u up
u f

t x x x x




  
   

    
, Where fi is a vector representing 

external forces. Each instantaneous quantity can be split into time-averaged and 

fluctuating components, and the resulting equation time-averaged, to yield: 

0牋 
i

i

u

x





so 

2
1

i i i i

j j i

j j i j j

u u u up
u u f

t x x x x x






   
    

     
 

 

Splitting each instantaneous quantity into its averaged and fluctuating components 

yields, 

 
0

i i

i

u u

x


 




 or 
 

 
 i i i i

j j

j

u u u u

u u
t x

 


   

 
 

or  
   

2

1 i i

i i

i j j

u up p

f f
x x x







  

  
  

 

Finally yielding 2
j i

i i j i j i j

j j

u u
f p S u u

x x
    

 
 

     
  

 

Another technique used for turbulence modeling is the Large Eddy Simulation 

(LES) Technique. LES  is prevalent in a wide variety of engineering applications, 

including combustion, acoustics, and even simulations of the atmospheric boundary 

layer (Orszagt 1970, Yokokawa et. al 2002, Ehsani 2009)  

 

LES operates on the Navier-Stokes equations to reduce the range of length scales of 

the solution, reducing the computational cost.  In mathematical Einstein notation, 

the Navier-Stokes equations for an incompressible fluid are: 
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0
i

i

u

x





or

2
1i ji i

j i j j

u uu up

t x x x x




 
   

    
 

The resulting sets of equations can be written as follows and are the LES equations: 

2
1 i ji i i

j

j i j j j

u u up
u

t x x x x x






  
    

     
 

 

The numerical solution of the Navier–Stokes equations for turbulent flow is very 

complex, and due to the significantly different mixing-length scales involved in the 

turbulent flow, the solution of this model requires such an extremely fine mesh 

resolution in which the computational time becomes significantly unrealistic 

(Orszagt 1970). Solutions to turbulent flow using a laminar solving technique 

usually result in a time-unsteady figure, which does not converge appropriately. 

CFD programs can be used to observe different fluid flow behaviors. See Figure 7. 

However, certain models such as the Reynolds-Averaged Navier Stokes Equations 

(RANS) in addition to utilizing turbulence models can be used in to maintain a level 

of accuracy in Computational programs. In addition, Large Eddy Simulation (LES) 

can numerically solve for the correct data, however it has economic limitation as it 

is an expensive computation tool and is financially not viable for virtual model 

testing. LES techniques, although meticulous and expensive than the RANS model 

has the ability to yield better results, since in it, larger turbulent scales are 

appropriately resolved (Yokokawa et. al 2002).   

 

Other turbulence models include the direct numerical simulation, Detached Eddy 

simulation and the Coherent vortex simulation. However, they are used for 

extremely complex models and recent developments allow for preconditioners that 

deliver mesh-independent convergence rates for any given system. These are 

beyond the scope of the current study and will neither be introduced nor discussed. 

 

A standard model known as SAE J1269 was developed by the Society of Automotive 

Engineers (SAE) to quantify the coefficient in the United States. Crr measured in 



148                       Communications in Applied Sciences 

the study using the Force, Torque and Power methods denote the rolling resistance 

coefficient being measured as the proportion of energy that is lost to the hysteresis 

of the material as the tire rolls (Society of Automotive Engineers 2006). The study 

results of the general coefficient and its comparison to the applied forces at wheels 

are in agreement with (Lenard 2007). Another standard, SAE J2452 provided more 

accuracy for Crr value over a range of different vehicle loads (weight), tire pressures 

and vehicle speeds. The model expression for the standard is defined 

as:  
2

   P ? Z ? a   b V   cV
rr

C
 

      Where P is the tire inflation pressure (in kPa or 

psi), Z is the applied load for vehicle weight (in N or lbs), V is the vehicle speed (in 

km/h or mph) and α, β, a, b, c are the constant coefficients for the model (Society of 

Automotive Engineers 1999).  

 

In Europe, rolling resistance is tested using the standard ISO 8767 (International 

Organization for Standardization 1992). The SAE standard is similar to the 

patented Crr calculated methodoly of Hur et al 1997, where the distance time data 

during the coast down motion is effectively expressed. 

Applying Newton’s Second law of motion, or (1 )
T R a

W d V
f D D D

g d t
     

Where DT represent transmission loss, given by 
0

( )
T

D W b V  and DR, Da 

represent Rolling friction loss and aerodynamic drag loss respectively denoted by 

2

2

( )
w d

R

n I I g
D W kV

W R

  
   

    

and 
21

2
a D

D C g V F
 

  
 
 

.  

Or  2d V
a b V c V

g d t


   where 1 f   , 

0 0
a f   and  c =

2

D
C F

k
g W

  


 
. 

 

To obtain the velocity time data, the expression is integrated to yield 

1( )
( ) ta n ( ta n ( ) ( ))

d S t h
V t B B T t h

d t g c B

  
    

 
 

where S(t) is the distance travelled by 

the vehicle from rest till t, T is the is the time from arbitrary t till stop. 
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Accordingly,
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. Similarly, the expression can be 

further integrated to yield data for distance-time, i.e 
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 (t=T) finally we have 
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where Ti is the time taken for the vehicle 

to travel to the ith position in the speed trap. 

Again,
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and 2
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Data results 

 

During the operational time period of 12 minutes, the following data were 

collected manually (venture meter tube heights and using the equation 3, the 

mean velocities) and automatically (Strain gauge data through transducer on the 

Labview software as Matlab data points converted to Drag Forces in Newton) for 

the drag test1.  

                                                 
1 Increasing Drag Coefficient (iCD) is 0.39 and Decreasing Drag Coefficient (dCD) is 0.41, With Full 

Scale Output (FSO) being 0.40 or 6.6% error within the tests according to the error, where:  

 
% 1 0 0

D D
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Figure 3: Drag Coefficients vs. Tests (Average Drag Coefficient, CD is 0.40) 

 

The actual drag coefficient of this model of the Volkswagen is 0.44 (Aird 2000), 

much higher than the results furnished by the wind tunnel (0.40 with a 10% error 

margin). An increased CD means that it is harder for the fluid to flow over the body. 

This difficulty can be contributed to the full scale car due to air flow causing 

disturbances underneath the car and at the wheels. The tested scaled model did not 

have wheels attached to it, nor was it resting on the ground. Moreover, external 

parts were taken off, such as side view mirrors and exhaust piping, all of which add 

blockades for the flow of air past the body. The actual CD data is produced under 

real parameters, much of which we considered insignificant during current tests. 

Ideal conditions were assumed and a few factors were negligible.  



Communications in Applied Sciences                           151 

0

5

10

15

20

25

W (kg m/s2) Entrance V

(mph)

Exit V (mph) ΔV (mph) Δt (sec) Acceleration

(m/s2)

Average

velocity

(mph)

Trial 1 Trial 2 Trial 3 Trial 4

 

Figure 4 shows mean velocity and acceleration data from each of the weighted 

trials2. 

 

From the above data, we further quantify results into force components and solve 

numerically for Crr and CD. The below table shows both the first iteration conducted 

by a numerical analysis package (Least Square Linear Regression and Optimization 

Technique) utilizing a random initial guess, as well as the second and final iteration. 

 

 

                                                 

2
0 ex ent

V V V   , where 
ex

V  and 
en t

V  are the mean set velocity readings from the 4 weighted test 

run trials.  

W = mt*g where mt is the total vehicle mass and g is the gravitational acceleration constant.  



152                       Communications in Applied Sciences 

Numerical 

Iteration 

Fsupplied 

mt.(ΔV0/Δt) 

Fdrag 

Cd.α 

Frolling 

Crr.β 

Σ (Fdrag+ 

Frolling) 

Cd.α+Crr.β 

Δ |Fsupplied - Σ Fd, R| 

|mt.(ΔV0/Δt)+( -Cd.α-

Crr.β)| 

1 -7.115 -6.9125 -0.0075 -6.9225 0.6025 

2 -7.1165 -6.262 -0.02175 -6.2825 1.1875 

 

Table 1: Total forces acting on vehicle model and subsequent iterations 

Since 
s u p p lie d d ra g ro llin g

F   0 ,  F F ? F    at coast down; or 0

t

V
m

t

 
 

 

-  
2

0

1
 

2
d a ir f

C A V V  - 

rr t
C m g V  

Let  
2

0

1

2
a ir f

A V V     and W V   where 
t

W m g   

The above two iterations of least square methods yield a coefficient of rolling 

resistance of 0.1119 and then 0.3712, while the coefficient of aerodynamic drag 

yields 0.0416 and 0.1165, respectively. Other linear regression techniques such as 

Huber M, the least absolute deviations and nonparametric regressions but due to 

the analysis of simple non skewed and non-high tailed data distributions in Table 1, 

Least Squares optimization technique was preferred (Mohebbi et al., 2007). 

 

This analysis however were conducted assuming the coefficient of drag is a variable 

or an unknown, and an initial guess was selected to provide a starting point for the 

iterations, resulting in possibly erroneous end result. The same analysis was 

conducted by eliminating the drag coefficient, thereby only solving for the rolling 

friction constant, since at slow speeds, the drag coefficient is effectively negligible. 

Similarly knowing the drag coefficient for the model is 0.40, we can Fdrag into a 

constant, thereby solving for the Crr again as shown in Figure 5. 
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Figure 5: Coefficient of Rolling Resistance with CD= 0 and CD= 0.40 

Knowing that the rolling resistance coefficient for a car the size of the test model 

would lie in between the ranges found assuming drag forces to be negligible (i.e. 

Fdrag~0.0 resulting in a Crr of 0.117) and the coefficient found after assuming that 

the model has a known constant drag coefficient found experimentally (i.e. 

Fdrag=CD*  
2

0

1

2
a ir f

A V V  , where CD is a constant of value 0.40; resulting in a Crr 

of 0.115). The average coefficient of rolling resistance for the experiment therefore 

would be 0.116 where the mean Crr can be calculated as: 
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Where K is approaching the value of the coefficient of aerodynamic drag, i.e. less 

than or greater than CD ; Hence (K ≠ CD); n is the total lines crossed, or more 

specifically, n is the exit position with n-1 the entrance position in the speed trap 

set up and M is the model-vehicle scale, moreover,  
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 (with the wind tunnel automotive drag force at varying tunnel air velocities of u0 

where 
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This confirms findings from Ehsani et al. Since a 1:10 scaled model was used for 

this dynamic testing, the full scale vehicle velocity is given by 

fu ll fu ll s c a le d
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 meaning 1 0s c a le fu llV V  , 

where theoretical Crr for a full scale vehicle is given by 

,

1 .6 0 9
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1 0 0
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C V
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, 

However, it cannot be automatically used for a scaled model. Conversely, the 

velocity cannot be scaled up to that of a full sized vehicle and have the coefficients 

match between the scaled entities.  

 

Here in this study, we multiply the coefficient value with the scales since this test is 

conducted on a trap regardless of size, unlike the model by Ehsani et al 2009. This 

however results in higher error due to the precision of the tests, and negligence of 

the transmission losses. Still, the current study data on average comes within 0.005 

of the patented results as shown in Figure 6 where 
,rr p

C  =10*
, ,rr p sca led

C
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Figure 6: Test data comparison with literature and theoretical figures3 

This scaling is independent of scaling factor incorporated due to Reynolds Number 

and similitude for the two velocities V  themselves. Here 
rr

C represents the 

average experimental values of the coefficients with and without considering the 

effects of drag at given speeds V scaled (in mph). Knowing that 
,rr theory

C  is given for 

full scale vehicles, to scale down to the 1:10 ratio, we multiply the 
, ,rr th sc

C value by 

10 to get data for the scaled model. The coefficient can be greatly changed by tire 

pressure, speed u or V, loading (curb weight W), wheel diameter and gap in data or 

measuring instruments, which is why most dynamic analysis do not directly 

correlate to literature data and result in errors as supported in (Wang 2004 et al).  

A slight change of the consistency of the ground material (concrete, sandy soil, loose 

soil, asphalt) changes the coefficient value dramatically (Wang 2003).  

                                                 

3 Where 
, ,

1 .6 0 9
0 .0 1 1

1 0 0
sca ledrr th sc

C V
  

    
  

and 
,rr theory

C = 10 * 
, ,rr th sc

C due to scaling. 
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Recent Studies also show that Crr can range from a higher interval of 0.006 to 0.035 

(Schmidt et al 2010) while the CD of the current model is, again, 0.44. This is in 

direct confirmation with the present study as the experimental range for the 

current study falls in this range; with, however, a high error of 43.416% for the 

mean values. Other studies conducted by the National Academy of Sciences, 2006, 

concluded that tires have a rolling resistance coefficient Crr of a range from 0.007 to 

0.014 (or a 10.47% error in the mean values). Common values for the rolling 

resistance coefficient of a full sized vehicle travelling on concrete range from 0.010 

to 0.015 (Gillespie 1992) or a mean of 0.0125. With respect to the current study, the 

this yields a 7.2% error. The average 
, ,r r th s c

C (Ehsani et al 2009) model values and 

the Crr values of the study share a 2.31% error with each other. Although using the 

model-to-vehicle scaling ratio can be used to estimate the rolling friction coefficient 

for the actual vehicle, there are a lot of variables in such real life testing. To best 

optimize accuracy using this method, the curb weight for both the vehicles would 

need to be maintained, in addition to both overall exterior scale and tire dimensions. 

 

For coefficient of drag, the error is mostly attributed towards the failure of the 

computation tool to take all real world parameters into consideration during fluid 

flow analysis and solving governing flow equations (Navier-Stokes equations), such 

as modeling relative to turbulence (Acheson 1990). Most wind tunnel flows are 

usually simulated with the Navier Stokes Equation (Obayashi et. al 1998). 

Turbulence is a time dependent chaotic behavior seen often in many fluid flows 

(including air flows) caused due to the inertia of the fluid as a whole to the 

culmination of time dependent acceleration; or flows where inertial behavior is 

insignificant and laminar. It is generally believed that the Navier–Stokes equations 

describe turbulence (Batchelor 1967). 
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Figure 7: CAD version of the study vehicle model in a CFD Add-on environment 

 

Conclusions 

 

A reduction of drag forces significantly helps the cars efficiency  (Sunny, S. A., 2013). 

Corrected design changes with verifiably lower coefficient of drag simply means 

that more energy will be going to the wheels of the car, as opposed to being used up 

in counteracting the drag forces that is exerted on the body by the air during motion 

(Ehsani 2009). This translates to more miles per unit volume of fuel, which in turn 

can mean lesser emissions given off by the car to travel the same distance. In most 

cases, the costs required to lower the drag coefficient pales in comparison to the fuel 

costs the car saves by being aerodynamically sound.  

 

Knowing rolling friction coefficient also has various applications in performance 

analysis and design of locomotives in everyday passenger car efficiency, as lower Crr 

tires could save 1.5–4.5% of all gasoline consumption (California Energy 

Commission 2003). It can even be important for more complex work such as 

correcting wheel sinkage during maneuvering through sandy terrains (Liu et al 

2008) or even for misalignment correction by wheels aboard Microsatellites during 
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orbital maintenance (Si Mohammed et al., 2006). Better designs have led to reduced 

coefficient values at the wheels in cars (around 0.0025) such as Michelin Solar and 

Eco Marathon Cars (Roche et al). In normal passenger vehicles, energy is wasted by 

rolling frictions effects on the highways in which sound and heat is generated and 

given off to the surroundings as a by-product by the tires (Hogan 1973).  

 

Although industrial machines have been designed that have the ability to quantify 

the rolling friction coefficient of a tire, such equipment are usually not within the 

reach of most designers or scientists. This model is a small scaled and low cost 

technique that not only gives the scaled coefficient value with an acceptable degree 

of accuracy, but can be used to extrapolate the value to a full scaled car as long as 

weighted and scaled proportions, i.e. vehicle curb weight and tire size are the same. 

Certain common automotive designs save money on the fuel and provide more force 

to the drive train, meaning valuable supplied force will not be wasted on 

overcoming air friction and drag forces. 
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