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1  Introduction 

 

Fredholm integral equations are frequently encountered in many physical processes 

such as dynamic stiffness of rigid rectangular foundations, soil mechanics and rock 

mechanics, diffraction of waves by randomly rough surface in two dimensions, 

thermoelasticity, and scattering problem. Rahbar and Hashemizadeh [1] used modified 

quadrature method and Chen et. al. [2] applied discrete multi-projection method to 

solve Fredholm integral equations of second kind. Ray and Sahu [3] have discussed 

several numerical methods like B-spline wavelet method, method of moments, 

variational iteration method, quadrature method and so on, and Long and Nelakanti [4] 

used iteration methods like iterative Galerkin method, iterative projection method, 

iterative degenerate kernel method and so on for the solution of Fredholm integral 

equations of second kind. Maleknejad et. al. [5, 6] have determined the numerical 

solution of integral equations of the second kind by block-pulse functions and 

Taylor-series expansion method. Babolian and Fattahzadeh [7] have used Chebyshev 

wavelet operational matrix of integration to solve integral equations. Cattani and 

Kudreyko [8] used harmonic wavelet method for the solution of Fredholm type integral 

equations of the second kind. Yousefi and Banifatemi [9] have solved Fredholm integral 

equations by using CAS wavelets.  

 

Two-dimensional Fredholm integral equations were solved using differential transform 

method by Ziyaee and Tari [10]. Lin [11] used wavelet based methods for numerical 

solutions of two dimensional integral equations. Alipanah and Esmaeili [12] applied 

Gaussian radial basis function for the numerical solution of the two-dimensional 

Fredholm integral equations. Fallahzadeh [13] solved two-dimensional Fredholm 

integral equation via RBF-triangular method. Tari and Shahmorad [14] determined a 
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computational method for solving two dimensional linear Fredholm integral equations 

of the second kind. Mirzaee and Piroozfar [15] numerically solved linear 

two-dimensional Fredholm integral equations of the second kind via two-dimensional 

triangular orthogonal functions.  

 

In the recent years, wavelets have been widely used to solve integral and differential 

equations. Sumana and Achala [17] have given a brief report on Haar wavelets. The 

main idea of Haar wavelet approach is to convert the integral equation into a system of 

algebraic equations that involves a finite number of variables which can be handled 

very conveniently. The paper is organized as follows. The Haar wavelet preliminaries 

and the function approximation are presented in Section 2. The method of solution of 

the one-dimensional and two-dimensional Fredholm integral equations using Haar 

wavelets is proposed in Section 3. The numerical examples and discussions are 

presented in Section 4. The conclusions drawn are presented in Section 5. 

 

2  Haar Wavelets 

 

The Haar wavelet family for [0,1]x  is defined [16] as follows 
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Here Jbm b ,0,1,=,2=   indicates the level of the wavelet; 1,0,1,= mk   is the 

translation parameter. J  is the maximum level of resolution. The index i  in equation 
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(1) is calculated by the formula 1=  kmi . In the case of minimum values 0=1,= km  

we have 2=i . The maximum value of i  is 12=2= JMi . For 1=i , )(1 xh  is assumed 

to be the scaling function which is defined as follows. 
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Any function )(xf  defined on [0,1]  can be expressed in terms of Haar wavelets as 

follows.  
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where the wavelet coefficients Miai ,21,2,=,   are to be determined.  

 

Any function ),( yxf  defined on [0,1][0,1]  can be expressed in terms of Haar 

wavelets as follows.  
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where the wavelet coefficients *,21,2,=,,21,2,=, MjMiaij   are to be determined. 

Here, )(yh j  is defined as follows. 
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Here **** ,0,1,=,2= Jbm b   indicates the level of the wavelet; 1,0,1,= ** mk   is the 

translation parameter. *J  is the maximum level of resolution. The index j  in 



Communications in Applied Sciences                            53 

equation (6) is calculated by the formula 1= **  kmj . In the case of minimum values 

0=1,= ** km  we have 2=j . The maximum value of j  is 1** 2=2= JMj . 

 

3  Method of Solution 

 

3.1  One-dimensional Fredholm Integral Equation 

 

The one-dimensional Fredholm integral equation of the second kind is given by  

 dttutxkxfxu )(),()(=)(
1

0  (8) 

where )(xf  is a known function, ),( txk  is the kernel and )(xu  is the unknown 

function.  

 

Let the Haar wavelet solution be in the form  
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Substituting equation (9) in equation (8) gives  
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The wavelet collocation points are defined as  
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Taking the collocation points lxx  in equations (10) and (9), we obtain  
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The wavelet coefficients Miai ,21,2,=,   are obtained by solving the M2  system of 

equations in (13). These coefficients are then substituted in equation (14) to obtain the 

Haar wavelet solution at the collocation points Mlxl ,21,2,=,  . 

 

3.2  Two-dimensional Fredholm Integral Equation 

 

The two-dimensional Fredholm integral equation of the second kind is given by  

 dsdtstustyxkyxfyxu ),(),,,(),(=),(
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where ),( yxf  is a known function, ),,,( styxk  is the kernel and ),( yxu  is the 

unknown function.  

 

Let the Haar wavelet solution be in the form  
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Substituting equation (16) in equation (15) gives  
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The wavelet collocation points are defined as  
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Taking the collocation points lxx , nyy   in equations (17) and (16), we obtain  
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 The wavelet coefficients *,21,2,=,,21,2,=, MjMiaij   are obtained by solving the 

*22 MM   system of equations in (21). These coefficients are then substituted in 

equation (22) to obtain the Haar wavelet solution at the collocation points ),( nl yx , 

Ml ,21,2,=  , *,21,2,= Mn  . 

 

4  Numerical Examples and Discussion 

 

In this section, examples are considered to check the efficiency and accuracy of the Haar 

wavelet collocation method (HWCM). Lagrange interpolation (in the case of 

one-dimensional Fredholm integral equation) and Lagrange bivariate interpolation (in 

the case two-dimensional of Fredholm integral equation) is used to find the solution at 

the specified points. The entire computational work has been done with the help of 
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MATLAB software. 

 

Example 1: 
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The exact solution is  

 xxu =)(  (24) 

 

Solving equation (11) for )(xGi , we obtain  
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The HWCM solution of the example with 4=J  in Table 1 and Figure 1. The results are 

compared with the exact solution. If )(xuex  is the exact solution (24), we define the 

error estimate as  

 )()(
2

1
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M
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We have obtained the following error estimates. [label=()]  

    1.  052.8172= E  in 2L  space and 051.1823= E  in L  space for 3=J .  

    2.  064.9826= E  in 2L  space and 061.5020= E  in L  space for 4=J .  

    3.  078.8093= E  in 2L  space and 071.8924= E  in L  space for 5=J .  

 

Example 2: 
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The exact solution is  
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Solving equation (11) for )(xGi , we have  
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The HWCM solution of the example with 5=J  in Table 2 and Figure 2. The results are 

compared with the exact solution. We have obtained the following error estimates. 

[label=()]  

    1.  056.9926= E  in 2L  space and 051.7481= E  in L  space for 3=J .  

    2.  051.2360= E  in 2L  space and 062.1850= E  in L  space for 4=J .  

    3.  062.1849= E  in 2L  space and 072.7312= E  in L  space for 5=J .  

 

Example 3: 
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The exact solution is  

 xyyxu =),(  (31) 

 

Solving equation (18) for )(xyGij , we obtain  
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The HWCM solution of the example with 4== *JJ  are given in Table 3 and Figure 3. 

The results are compared with the exact solution. Figure 4 shows the physical behavior 

of the HWCM solution in contour and 3D. If ),( yxuex  is the exact solution (31), we 

define the error estimate as  
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We have obtained the following error estimates. [label=()]  

    1.  041.5048= E  in 2L  space and 042.0099= E  in L  space for 

2== *JJ .  

    2.  051.8793= E  in 2L  space and 052.5627= E  in L  space for 

3== *JJ .  

    3.  062.3486= E  in 2L  space and 063.2361= E  in L  space for 

4== *JJ .  

 

Example 4: 
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The exact solution is  
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Solving equation (18) for ),( yxGij , we have  
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The HWCM solution of the example with 2== *JJ  are given in Table 4 and Figure 5. 

The results are compared with the exact solution. Figure 6 shows the physical behavior 

of the HWCM solution in contour and 3D. We have obtained the following error 

estimates. [label=()]  

    1.  174.1297= E  in 2L  space and 175.5511= E  in L  space for 

1== *JJ .  

    2.  173.9492= E  in 2L  space and 175.3776= E  in L  space for 

2== *JJ .  

    3.  173.2655= E  in 2L  space and 176.2450= E  in L  space for 

3== *JJ .  

 

5  Conclusion 

 

In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to 

solve one-dimensional and two-dimensional Fredholm integral equations. The 

numerical scheme is tested for four examples. The obtained numerical results are 

compared with the exact solutions. We observe that the error values are negligibly small 

which indicate that the HWCM solution is very close to the exact solution. Thus the 

Haar wavelet method guarantees the necessary accuracy with a small number of grid 



60                            Communications in Applied Sciences 

points and a wide class of integral equations can be solved using this approach. 

 

 

Figure 1: Comparison of the HWCM solution and exact solution of Example 1  

 

Figure 2: Comparison of the HWCM solution and exact solution of Example 2  
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Figure 3: Comparison of the HWCM solution and exact solution of Example 3  

 

 
 

Figure 4: Physical behaviour of the HWCM solution of Example 3 
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Figure 5: Comparison of the HWCM solution and exact solution of Example 4  

       

 

  

Figure 6: Physical behaviour of the HWCM solution of Example 4  
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Table 1: Comparison of the HWCM solution and exact solution of Example 1 

 

 x    )(xu   

  HWCM   Exact 

0.1   0.09999512   0.10000000  

0.2   0.19999023   0.20000000  

0.3   0.29998535   0.30000000  

0.4   0.39998047   0.40000000  

0.5   0.49997559   0.50000000  

0.6   0.59997070   0.60000000  

0.7   0.69996582   0.70000000  

0.8   0.79996094   0.80000000  

0.9   0.89995606   0.90000000  

 

 

 

Table 2: Comparison of the HWCM solution and exact solution of Example 2 

 

 x    )(xu   

  HWCM   Exact 

0.1   1.69638676   1.69640389  

0.2   1.80385244   1.80386992  

0.3   1.91619797   1.91621545  

0.4   2.03326068   2.03327816  

0.5   2.15479017   2.15480765  

0.6   2.28043114   2.28044862  

0.7   2.40970419   2.40972167  

0.8   2.54198360   2.54200108  

0.9   2.67647185   2.67648932  
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  Table 3: Comparison of the HWCM solution and exact solution of Example 3  

  

 ),( yx    ),( yxu    ),( yx    ),( yxu   

  HWCM   Exact     HWCM   Exact  

(0.1,0.2)   0.02002093   0.02000000   (0.5,0.6)   0.30007674   0.30000000  

(0.1,0.4)   0.04003488   0.04000000   (0.5,0.8)   0.40009069   0.40000000  

(0.1,0.6)   0.06004883   0.06000000   (0.7,0.2)   0.14006279   0.14000000  

(0.1,0.8)   0.08006279   0.08000000   (0.7,0.4)   0.28007674   0.28000000  

(0.3,0.2)   0.06003488   0.06000000   (0.7,0.6)   0.42009069   0.42000000  

(0.3,0.4)   0.12004883   0.12000000   (0.7,0.8)   0.56010465   0.56000000  

(0.3,0.6)   0.18006279   0.18000000   (0.9,0.2)   0.18007674   0.18000000  

(0.3,0.8)   0.24007674   0.24000000   (0.9,0.4)   0.36009069   0.36000000  

(0.5,0.2)   0.10004883   0.10000000   (0.9,0.6)   0.54010465   0.54000000  

(0.5,0.4)   0.20006279   0.20000000   (0.9,0.8)   0.72011860   0.72000000  

 

 Table 4: Comparison of the HWCM solution and exact solution of Example 4  

  

 ),( yx    ),( yxu    ),( yx    ),( yxu   

  HWCM   Exact     HWCM   Exact  

(0.1,0.2)   0.76923117   0.76923077   (0.5,0.6)   0.47619048   0.47619048  

(0.1,0.4)   0.66666687   0.66666667   (0.5,0.8)   0.43478260   0.43478261  

(0.1,0.6)   0.58823540   0.58823529   (0.7,0.2)   0.52631577   0.52631579  

(0.1,0.8)   0.52631577   0.52631579   (0.7,0.4)   0.47619047   0.47619048  

(0.3,0.2)   0.66666663   0.66666667   (0.7,0.6)   0.43478261   0.43478261  

(0.3,0.4)   0.58823530   0.58823529   (0.7,0.8)   0.40000000   0.40000000  

(0.3,0.6)   0.52631580   0.52631579   (0.9,0.2)   0.47619077   0.47619048  

(0.3,0.8)   0.47619046   0.47619048   (0.9,0.4)   0.43478272   0.43478261  

(0.5,0.2)   0.58823526   0.58823529   (0.9,0.6)   0.40000004   0.40000000  

(0.5,0.4)   0.52631579   0.52631579   (0.9,0.8)   0.37037039   0.37037037  
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