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Abstract

Effects of radiation on unsteady free convection flow of a viscous incompressible fluid
past a moving vertical plate embedded in a porous medium on taking viscous dissipa-
tion into account have been studied. The governing partial differential equations have
been solved numerically by applying a Crank - Nicolson’s type of implicit finite difference
method with a tri-diagonal matrix manipulation and an iterative procedure. The varia-
tions of the fluid velocity and temperature are presented graphically. It is found that the
radiation decelerates the fluid velocity. The fluid velocity increases with an increase in
Darcy number. An increase in Eckert number leads to rise in fluid velocity and tempera-
ture. Further, it is found that the magnitude of the shear stress at the plate increases with
an increase in either radiation parameter or Prandtl number. The rate of heat transfer
at the plate increases with an increase in radiation parameter. This model finds appli-
cations in geophysics, astrophysics and also in the design of high temperature industrial
processing systems.
Key words: Free convection, radiation, Prandtl number, Grashof number, Darcy num-
ber, porous medium and viscous dissipation.

1 Introduction

The heat transfer from different geometries embedded in porous media has many engineering

and geophysical applications such as geothermal reservoirs, drying of porous solids, thermal in-

sulation, enhanced oil recovery, packed-bed catalytic reactors, cooling of nuclear reactors, and

underground energy transport. A very significant area of research in radiative heat transfer, at
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the present time is the numerical simulation of combined radiation and convection /conduction

transport processes. The effort has arisen largely due to the need to optimize industrial system

such as furnaces, ovens and boilers and the interest in our environment and in non-conventional

energy sources such as the use of salt-gradient solar ponds for energy collection and storage. In

particular, natural convection induced by the simultaneous action of buoyancy forces resulting

from thermal diffusion is of considerable interest in nature and in many industrial applications

such as geophysics, oceanography, drying processes and solidification of binary alloy. Convec-

tive heat transfer in porous media has received considerable attention in recent years owing to

its importance in various technological applications such as fibre and granular insulation, elec-

tronic system cooling, cool combustors, oil extraction, thermal energy storage and flow through

filtering devices, porous material regenerative heat exchangers. Books by Nield and Bejan [1],

Bejan and Kraus [2] and Ingham et al. [3] excellently describe the extent of the research in-

formation in this area. The viscous dissipation effects are important in geophysical flows and

also in certain industrial operations and are usually characterized by the Eckert number. In

the literature, extensive research work is available to examine the effect of natural convection

on flow past a plate. Callahan and Manner [4] first considered the transient free convection

flow past a semi infinite plate by explicit finite difference method. Unsteady free convective

flow on taking into account the mass transfer phenomenon past an infinite vertical porous plate

with constant suction was studied by Soundalgekar and Wavre [5]. Kafousias et al. [6] have

studied the effects of free convective currents on the flow field of an incompressible viscous

fluid past an impulsively started infinite vertical porous plate with constant suction. However,

this analysis is not applicable for other fluids whose Prandtl number is different from unity.

Soundalgekar and Ganesan [7] have analyzed transient free convective flow past a semi infinite

vertical flat plate, taking into account mass transfer by an implicit finite difference method of

Crank-Nicolson type. Free convection at a vertical plate with transpiration has investigated

by Kolar and Sastri [8]. Yih [9] have analyzed the effect of transpiration on coupled heat and

mass transfer in mixed convection over a vertical plate embedded in a saturated porous medi-

um. Elbashbeshy [10] has investigated the mixed convection along a vertical plate embedded in

non-darcian porous medium with suction and injection. Chin et al. [11] has studied the effect

of variable viscosity on mixed convection boundary layer flow over a vertical surface embedded

in a porous medium. MHD steady free convection flow from vertical surface in porous medium

has been studied by Reddy [12]. Thermal radiation in fluid dynamics has become a significant

branch of the engineering sciences and is an essential aspect of various scenarios in mechanical,

aerospace, chemical, environmental, solar power and hazards engineering. For some industrial

applications such as glass production and furnace design and in space technology applications
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such as cosmical flight aerodynamics rocket, propulsion systems, plasma physics and spacecraft

re-entry aerothermodynamics which operate at higher temperatures, radiation effects can be

significant. In view of this, Hossain and Takhar [13] have analyzed the effect of radiation on

mixed convection along a vertical plate with uniform surface temperature. Pal and Talukdar

[14] have studied the buoyancy and chemical reaction effects on MHD mixed convection heat

and mass transfer in a porous medium with thermal radiation and ohmic heating. Vasu et al.

[15] have studied the radiation and mass transfer effects on transient free convection flow of a

dissipative fluid past semi-infinite vertical plate with uniform heat and mass flux. Gundagani

[16] has obtained a finite element solution of thermal radiation effect on unsteady MHD flow

past a vertical porous plate with variable suction. In most of the studies mentioned above,

viscous dissipation is neglected. Gebhart [17] has shown the importance of viscous dissipative

heat in free convection flow in the case of isothermal and constant heat flux at the plate. Geb-

hart and Mollendorf [18] have considered the effects of viscous dissipation for external natural

convection flow over a surface. Soundalgekar [19] has analyzed viscous dissipative heat on the

two-dimensional unsteady free convective flow past an infinite vertical porous plate when the

temperature oscillates in time and there is constant suction at the plate. Maharajan and Geb-

hart [20] have reported the influence of viscous dissipation effects in natural convective flows,

showing that the heat transfer rates are reduced by an increase in the dissipation parameter.

Israel Cookey et al. [21] have investigated the influence of viscous dissipation and radiation on

unsteady MHD free convection flow past an infinite heated vertical plate in a porous medium

with time dependent suction. Srihari et al. [22] have studied MHD free convection flow of an

incompressible viscous dissipative fluid in an infinite vertical oscillating plate with constant heat

flux. Suneetha et al. [23] have analyzed the effects of viscous dissipation and thermal radiation

on hydromagnetic free convective flow past an impulsively started vertical plate. Suneetha et

al.[24] have studied the effects of thermal radiation on the natural convective heat and mass

transfer of a viscous incompressible gray absorbing-emitting fluid flowing past an impulsively

started moving vertical plate with viscous dissipation. Ahmed and Batin [25] have obtained

an analytical model of MHD mixed convective radiating fluid with viscous dissipative heat.

Babu et al. [26] have studied the radiation and chemical reaction effects on an unsteady MHD

convective flow past a vertical moving porous plate embedded in a porous medium with vis-

cous dissipation. Kishore et al. [27] have analyzed the effects of thermal radiation and viscous

dissipation on MHD heat and mass diffusion flow past an oscillating vertical plate embedded

in a porous medium with variable surface conditions.

The objective of the present work is to study the effects of radiation on unsteady free

convective flow of a viscous incompressible fluid past a moving vertical plate embedded in a
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porous medium on taking viscous dissipation into account. At time t ≤ 0, both the fluid and

plate are at rest with constant temperature T∞. At time t > 0, the plate at y = 0 starts to move

in its own plane with a velocity u0 and the plate temperature is raised to Tw. The governing

equations have been solved numerically using Crank- Nicolson’s method. It is found that the

fluid velocity u decreases with an increase in radiation parameter Ra. It is observed that the

fluid velocity u increases with an increase in either Darcy number Da or Eckert number Ec.

It is also found that the fluid temperature θ decreases with an increase in radiation parameter

Ra. Further, it is found that the absolute value of the shear stress τx at the plate (η = 0)

increases with an increase in either Ra or Ec. The rate of heat transfer −
(
∂θ
∂η

)
η=0

at the plate

(η = 0) decreases with an increase in Ra.

2 Formulation of the problem and its solution

Consider the unsteady hydrodynamic flow of a viscous incompressible radiative fluid past a

moving vertical plate embedded in a porous medium on taking into account viscous dissipa-

tion. The x-axis is taken along the vertical plate in an upward direction and y-axis is taken

normal to the plate (see Fig.1). At time t ≤ 0, both the fluid and plate are at rest with constant

temperature T∞. At time t > 0, the plate at y = 0 starts to move in its own plane with a

velocity u0 and Tw is the plate temperature . It is also assumed that the radiative heat flux in

the x- direction is negligible as compared to that in the y- direction. As the plate is infinitely

long, the velocity and temperature fields are functions of y and t only.

0
u y

x

o

Plate

Porous Medium

0
v

Fig.1: Geometry of the problem

Under the above assumptions and on using the usual Boussinesq approximation, the gov-

erning Navier-Stokes equations and energy can be written as

∂u′

∂t
− v′0

∂u′

∂y
= ν

∂2u′

∂y2
+ gβ(T − T∞)− ν

k∗u
′, (1)
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ρcp

(
∂T

∂t
− v′0

∂T

∂y

)
= k

∂2T

∂y2
+ µ

(
∂u′

∂y

)2

− ∂qr
∂y

, (2)

where u′ is the fluid velocity in the x-direction, T the fluid temperature, g the acceleration due

to gravity, β the coefficient of thermal expansion, µ the coefficient of viscosity, ν the kinematic

viscosity, ρ the fluid density, k∗ permeability of the porous medium, k the thermal conductivity,

cp the specific heat at constant pressure and qr the radiative heat flux.

The initial and boundary conditions are

u′ = 0, T = T∞ for all y and t ≤ 0,

u′ = u0, T = Tw at y = 0 at t > 0, (3)

u′ → 0, T → T∞ as y → ∞ for t > 0.

It has been shown by Cogley et al.[28] that in the optically thin limit for a non-gray gas near

equilibrium, the following relation holds

∂qr
∂y

= 4(T − T∞)

∞∫
0

Kλ0

(
∂eλp
∂T

)
0

dλ, (4)

where Kλ is the absorption coefficient, λ is the wave length, eλp is the Planck’s function and

subscript ′0′ indicates that all quantities have been evaluated at the temperature T∞ which is

the temperature of the plate at time t ≤ 0. Thus, our study is limited to small difference of

plate temperature to the fluid temperature.

On the use of the equation (4), equation (2) becomes

ρcp

(
∂T

∂t
− v′0

∂T

∂y

)
= k

∂2T

∂y2
+ µ

(
∂u′

∂y

)2

− 4 (T − T∞) I, (5)

where

I =

∞∫
0

Kλ0

(
∂eλp
∂T

)
0

dλ. (6)

Introducing the non-dimensional variables

η =
u0y

ν
, τ =

t u2
0

ν
, u =

u′

u0

, θ =
T − T∞

Tw − T∞
, (7)

equations (1) and (5) become

∂u

∂τ
− S

∂u

∂η
= Gr θ +

∂2u

∂η2
− 1

Da
u, (8)

Pr

(
∂θ

∂τ
− S

∂θ

∂η

)
=

∂2θ

∂η2
+ PrEc

(
∂u

∂η

)2

−Ra θ, (9)
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where Da =
k∗u2

0

ν2
is the Darcy number, S =

v′0
u0

the suction parameter, Ra = 4I T∞
k

the radiation

parameter, Pr = ρνcp
k

the Prandtl number, Gr =
g β ν (Tw−T∞)

u3
0

the Grashof number and Ec =
u2
0

cp(Tw−T∞)
the Eckert number.

The corresponding boundary conditions for u(η, τ) and θ(η, τ) are

u = 0, θ = 0 for η ≥ 0 and τ ≤ 0,

u = 1, θ = 1 at η = 0 for τ > 0, (10)

u → 0, θ → 0 as η → ∞ for τ > 0.

3 Numerical Solution

Equations (8) - (9) are coupled, non-linear partial differential equations and these equations can

not be solved analytically. However, these equations can be solved numerically. One of the most

commonly used numerical methods is the finite difference technique which has better stability

characteristics and is relatively simple, accurate and efficient. Another essential feature of this

technique is that it is based on an iterative procedure and a tri-diagonal matrix manipulation.

This method provides satisfactory results but it may fail when applied to problems in which

the differential equations are very sensitive to the choice of initial conditions. In all numerical

solutions the continuous partial differential equation is replaced with a discrete approximation.

In this context the word discrete means that the numerical solution is known only at a finite

number of points in the physical domain. The number of those points can be selected by the

user of the numerical method. In general, increasing the number of points not only increases the

resolution but also the accuracy of the numerical solution. The discrete approximation results

in a set of algebraic equations that are evaluated (or solved) for the values of the discrete

unknowns. The mesh is the set of locations where the discrete solution is computed. These

points are called nodes and if one were to draw lines between adjacent nodes in the domain the

resulting image would resemble a net or mesh.

When time dependent solutions are important, the Crank-Nicolson scheme has significant

advantages. The Crank-Nicolson scheme is not significantly more difficult to implement and it

has a temporal truncation error that is O(∆τ 2) as explained by Recktenwald [29]. The Crank-

Nicolson scheme is implicit, it is also unconditionally stable [30, 31, 32]. In order to solve the

equations (8) and (9) under the initial and boundary conditions (10), an implicit finite difference

scheme of Crank-Nicolson’s type has been employed. The right hand side of the equations (8)

and (9) is approximated with the average of the central difference scheme evaluated at the

current and the previous time step. The finite difference equation corresponding to equations
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(8) and (9) are as follows:

ui,j+1 − ui,j

∆τ
− S

ui+1,j − ui,j

∆η
=

1

2(∆η)2
[ui−1,j − 2ui,j + ui+1,j + ui−1,j+1 − 2ui,j+1 + ui+1,j+1]

+
Gr

2
(θi,j+1 + θi,j)−

1

2Da
(ui,j+1 + ui,j) , (11)

Pr

(
θi,j+1 − θi,j

∆τ
− S

θi+1,j − θi,j
∆η

)
=

1

2(∆η)2
[θi−1,j − 2θi,j + θi+1,j + θi−1,j+1 − 2θi,j+1 + θi+1,j+1]

+ Pr Ec

(
ui+1,j − ui,j

∆η

)2

− R

2
(θi,j+1 + θi,j) . (12)

The boundary conditions (10) become

ui,0 = 0, θi,0 = 0 for all i ̸= 0,

u0,j = 1, θ0,j = 1, (13)

uN,j = 0, θN,j = 0,

where N corresponds to ∞. Here the suffix i corresponds to y and j corresponds to τ . Also

∆τ = τj+1− τj and ∆η = ηi+1− ηi. Knowing the values of θ, u at a time τ we can evaluate the

values at a time τ + ∆τ as follows . We substitute i = 1, 2, ..., N − 1, in equation (12) which

constitute a tri-diagonal system of equations, the system can be solved by Thomas algorithm as

discussed in Carnahan et al.[33]. Thus θ is known for all values of η at time τ . Then knowing

the values of θ and applying the same procedure with the boundary conditions, we calculate,

u from equation (11). This procedure is continued to obtain the solution till desired time τ .

The Crank-Nicolson scheme has a truncation error of O (∆τ 2) + O (∆η2), i.e. the temporal

truncation error is significantly small.

1i -

h
o 1i +i

1j +

j

1j -

tD

hD

2i - 2i +

2j -

2j +

t

Fig.2: Finite difference grids



66 Communications in Applied Sciences

The implicit method gives stable solutions and requires matrix inversions which we have

done at step forward in time because this problem is an initial-boundary value problem with

a finite number of spatial grid points. Though, the corresponding difference equations do not

automatically guarantee the convergence of the mesh ∆η → 0. To achieve maximum numerical

efficiency, we used the tri-diagonal procedure to solve the two- point conditions governing the

main coupled governing equations of momentum and energy. The convergence (consistency) of

the process is quite satisfactory and the numerical stability of the method is guaranteed by the

implicit nature of the numerical scheme. Hence, the scheme is consistent. The stability and

consistency ensure convergence.

4 Results and discussion

We have presented the non-dimensional fluid velocity u and the fluid temperature θ for several

values of the radiation parameter R, Darcy number Da, Prandtl number Pr, Grashof number

Gr, Eckert number Ec, suction parameter S and time τ in Figs.3-14. It is seen from Fig.3 that

the fluid velocity u decreases with an increase in radiation parameter Ra. This implies that

the radiation has retarding influence on the velocity field. The radiation parameter arises only

in the energy equation in the thermal diffusion term and via coupling of the temperature field

with the buoyancy term in the momentum equation, the fluid velocity is indirectly influenced

by thermal radiation effect. An increase in Ra clearly reduces the fluid velocity. It is revealed

from Fig.4 that the fluid velocity u increases with an increase in Darcy number Da. Fig.5

displays that the fluid velocity u increases with an increase in Prandtl number Pr. Fig.6 shows

that the fluid velocity u increases with an increase in Grashof number Gr. Grashof number Gr

signifies the relative effect of the thermal buoyancy force to the viscous hydrodynamic force.

As expected, it is observed that there is a rise in the fluid velocity due to the enhancement of

thermal buoyancy force. It is due to the fact that an increase of Grashof number has a tendency

to increase the thermal effect. This gives rise to an increase in the induced flow. Fig.7 shows

that the fluid velocity u increases with an increase in Eckert number Ec. It is seen from Fig.8

that the fluid velocity u decreases with an increase in suction parameter S. It is observed from

Fig.9 that the fluid velocity u increases with an increase in time τ . It is illustrated from Fig.10

that the fluid temperature θ increases with an increase in Darcy number Da. Fig.11 display

that the fluid temperature θ decreases with an increase in radiation parameter Ra. This is

due to the fact that the radiation provides an additional means to diffuse energy. Fig.12 shows

that the fluid temperature θ decreases with an increase in Prandtl number Pr. The reason is

that smaller values of Prandtl number are equivalent to increasing thermal conductivity and
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therefore heat is able to diffuse away from the heated surface more rapidly than for higher

values of Prandtl number. It is seen from Fig.13 that the fluid temperature θ increases with

an increase in Eckert number Ec. Eckert number is the ratio of the kinetic energy of the flow

to the boundary layer enthalpy difference. The effect of viscous dissipation on the flow field is

to increase the energy, yielding a greater fluid temperature and as a consequence greater buoy-

ancy force. The increase in the buoyancy force due to an increase in the dissipation parameter

enhances the temperature. Fig.14 shows that the fluid temperature θ decreases with an in-

crease in suction parameter S. It is seen from Figs.10-14 that the maximum of the temperature

occur in the vicinity of the plate and asymptotically approaches to zero in the free stream region.
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Fig.3: Velocity for Ra when Da = 0.1, Gr = 5, Ec = 0.5, Pr = 0.25, S = 0.5 and τ = 0.2
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Fig.4: Velocity for Da when Gr = 5, Ra = 2, Ec = 0.5, Pr = 0.25, S = 0.5 and τ = 0.2
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Fig.5: Velocity for Pr when Da = 0.1, Gr = 5, Ec = 0.5, S = 0.5 and τ = 0.2
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Fig.6: Velocity for Gr when Da = 0.1, Ra = 2, Ec = 0.5, Pr = 0.25, S = 0.5 and τ = 0.2
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Fig.7: Velocity for Ec when Da = 0.1, Gr = 5, Ra = 2, Pr = 0.25, S = 0.5 and τ = 0.2
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Fig.8: Velocity for S when Da = 0.1, Gr = 5, Ra = 2, Ec = 0.5, Pr = 0.25 and τ = 0.2
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Fig.9: Velocity for time τ when Da = 0.1, Gr = 5, Ec = 0.5, Pr = 0.25, S = 0.5 and Ra = 2
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Fig.10: Temperature for Da when Ra = 2, Ec = 0.5, Pr = 0.25, S = 0.5 and τ = 0.2

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ

R = 4, 6, 8  

Fig.11: Temperature for Ra when Da = 0.1, Ec = 0.5, Pr = 0.25, S = 0.5 and τ = 0.2
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Fig.12: Temperature for Pr when Da = 0.1, Ec = 0.5, Ra = 2, S = 0.5 and τ = 0.2
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Fig.13: Temperature for Ec when Da = 0.1, Ra = 2, Pr = 0.25, S = 0.5 and τ = 0.2
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Fig.14: Temperature for S when Pr = 0.71, Da = 0.1, Ec = 0.5 and Ra = 5

Numerical values of the rate of heat transfer −
(
∂θ
∂η

)
η=0

at the plate η = 0 are presented

in Tables 1 and 2 for several values of radiation parameter Ra, Prandtl number Pr, time τ ,

Darcy number Da and Eckert number Ec. It is seen from Table 1 that the rate of heat transfer

−
(
∂θ
∂η

)
η=0

at the plate η = 0 decreases with an increase in either Prandtl numbe Pr or time

τ . It is also seen that the rate of heat transfer −
(
∂θ
∂η

)
η=0

at the plate η = 0 increases with

an increase in radiation parameter Ra. Further, it is seen from Table 2 that the rate of heat

transfer −
(
∂θ
∂η

)
η=0

decreases with an increase in Darcy number Da while it decreases with an

increase in time τ for fixed values of radiation parameter Ra. The positive values of the rate

of heat transfer show that the heat is transferred from the medium to the plate.

Table 1. Rate of heat transfer −
(
∂θ
∂η

)
η=0

at the plate η = 0

Pr τ

Ra 0.25 0.5 0.71 0.85 0.2 0.4 0.6 0.8

2 2.44407 2.26802 2.15944 2.10457 3.56816 3.26816 3.00816 2.56816

4 3.48842 3.19362 3.17673 3.15100 3.64052 3.36210 3.03399 2.65619

6 3.88086 3.81167 3.80541 3.74681 3.71281 3.60352 3.47549 3.32894

8 4.53613 4.37582 4.29178 4.24777 4.32732 4.15019 3.94108 3.70008
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Table 2. Rate of heat transfer −
(
∂θ
∂η

)
η=0

at the plate η = 0

Da Ec

R 0.01 0.02 0.03 0.04 0.2 0.4 0.6 0.8

2 3.56816 3.12768 3.06254 3.06111 3.56816 3.23749 3.18157 3.07828

4 3.59562 3.17326 3.17135 3.16223 3.67858 3.28561 3.32644 3.08256

6 3.76693 3.65978 3.66987 3.70648 3.88739 3.88868 3.81513 3.71984

8 4.30862 4.27573 4.26754 4.26310 4.60096 4.37165 4.24554 4.13820

The non-dimensional shear stress τx at the plate η = 0 due to the flow is given by

τx =

(
∂u

∂η

)
η=0

. (14)

Numerical values of the non-dimensional shear stress τx due to the flow at the plate η = 0

are presented in Figs.15-19 against radiation parameter R for several values of Darcy number

Da, Prandtl number Pr, Grashof number Gr, suction parameter S, Eckert number Ec and

time τ . Fig.15 shows that the absolute value of the shear stress τx increases with an increase

in Darcy number Da. On other hand, it is observed that the absolute value of the shear stress

τx increases with an increase in radiation parameter Ra. Fig.16 shows that the absolute value

of the shear stress τx increases with an increase in Prandtl number Pr. Physically, this is true

because the increase in the Prandtl number is due to increase in the viscosity of the fluid, which

makes the fluid thick and hence a decrease in the velocity of the fluid. Fig.17 shows that the

absolute value of the shear stress τx decreases with an increase in Grashof number Gr. It is

illustrated from Fig.18 that the absolute value of the shear stress τx increases with an increase

in suction parameter S. It is seen from Fig.19 that the absolute value of the shear stress τx

decreases with an increase in Eckert number Ec. Fig.20 shows that the absolute value of the

shear stresses τx increases with an increase in time τ .
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Fig.15: Shear stress τx for Da when Pr = 0.71, Gr = 5, S = 0.5, Ec = 0.5 and τ = 0.2
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Fig.18: Shear stress τx for S when Da = 0.1, Pr = 0.71, Gr = 5, Ec = 0.5 and τ = 0.2
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Fig.19: Shear stress τx for Ec when Da = 0.1, Pr = 0.71, Gr = 5, S = 0.5 and τ = 0.2
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5 Conclusion

The radiation effects on unsteady free convection flow of a viscous incompressible fluid past a

moving vertical plate embedded in porous medium by taking into account viscous dissipation

have been studied. It is observed that the radiation has a retarding influence on the fluid
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velocity. An increase in Darcy number leads to increase the fluid velocity. The fluid velocity

and temperature raise due to viscous dissipation. The presence of suction falls the fluid velocity

and temperature. Further, it is found that the absolute value of the shear stress τx at the plate

(η = 0) increases with an increase in either Ra or τ . The rate of heat transfer −
(
∂θ
∂η

)
η=0

at the

plate (η = 0) increases with an increase in Ra. It is also found that the rate of heat transfer

falls with increasing Eckert number Ec.
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