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Abstract. This paper presents some numerical methods for vanilla option valuation namely binomial tree model, Crank

Nicolson method and Monte Carlo method. Binomial model is widely used in the finance community for numerical valuation

of a wide variety of option models, due primarily to its ease of implementation and pedagogical appeal. Crank Nicolson

approach seeks the discretization of the differential operators in the continuous Black Scholes model. Monte Carlo method

simulates the random movement of the asset prices and provides a probabilistic solution to the option pricing models. We

discuss the strengths, drawbacks and the performance of the methods under consideration. However, binomial model is the

most accurate and converges faster than its two counterparts; Crank Nicolson method and Monte Carlo method.
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1 Introduction

In the last few years, financial derivatives, in particular options, become very popular financial

contracts. A financial derivative is a financial asset whose value is derived in part from the value

and characteristics of some other underlying assets. Options can be used for instance, to hedge

assets and portfolios in order to control the risk due to movements in the share price. Options fall

in two classes namely put and call. A vanilla option is a financial instrument that gives the right,

but not obligation, to buy or sell an underlying asset at a predetermined price, within a given time

frame. A vanilla option is a normal call and put option that has standardized terms and no special

or unusual features. It is generally traded on an exchange such as the Chicago Board Options

Exchange (CBOE). Examples are American and European options. The derivative of interest in

this paper is an European option. European option contract is an agreement between two parties

that gives one party the right to buy or sell the underlying asset at some specified date in the

future for a fixed price. This right has a value and the party that provides the option will demand

compensation at the inception of the option. Further, once initiated, options can be traded on an

exchange much like the underlying asset.
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A European call option on a stock gives the buyer the right but not the obligation to buy a

number of shares of stocks (the underlying asset for stock options, S) for a specified price (the

exercise or strike price, K) at a specified date, T in the future. In general, it seems clear that the

higher the price of the stock, the greater the value of the option. When the stock price is much

greater than the exercise price, the call option is almost sure to be exercised “in the money”. If the

price of the underlying asset is less than the exercise price, the call option is almost sure to expire

without being exercised, so its value will be zero “out of the money” whereas a call option with an

exercise price is equal to the price of underlying asset then the call option is “at the money” [9]. The

value of the call option is thus a function of S and time and its payoff, which describes the option’s

value ate date T , is given by

C(S, T ) = max(S −K, 0) (1.1)

A European put option gives the buyer the right to sell a number of shares of stock for a specified

time. The payoff which describes a put option’s value at time T is given by

P (S, T ) = max(K − S, 0) (1.2)

If the expiration date of the option is very far in the future, then the price of a bond that

pays the exercise price on the maturity date will be very low, and the value of the option will be

approximately equal to the price of the stock [1]. On the other hand, if the expiration date is very

near, the value of the option will be approximately equal to the stock price minus the exercise price

or, zero, if the stock price is less than exercise price. Normally the value of an option declines as its

maturity date approaches, if the value of the stock does not change [1].

European options are some of the simplest financial derivatives. They are interesting, because

their valuation proved to be difficult until 1973. Before that there was no generally accepted model

that could give option’s trader the value of an option before expiry, the answer was provided by

solving Black Scholes equation. In an idealized financial market the price of a European option can

be obtained as the solution of the celebrated Black Scholes equation [1]. This equation provides a

hedging portfolio that replicates the contingent claim.

One of the major contributors to the world of finance were Black and Scholes [1]. They ushered

in the modern era of derivative securities with a seminar paper titled “Pricing and Hedging of

European call and put options”. In this paper, the famous Black-Scholes formula made its debut

and the Itô calculus was applied to finance. Later Merton (1976) proposed a jump-diffusion model.

[6] derived the tree methods of pricing options based on risk-neutral valuation, the binomial option

pricing European option prices under various alternatives, including the absolute diffusion, pre-

jump and square root constant elasticity of variance methods [12]. J. Hull and A. White [13] used

explicit finite difference method for the valuation of derivatives securities. P. Boyle [2] introduced a

Monte Carlo approach for pricing options. Twenty years later, P. Boyle et al [3] described research

advances that had improved efficiency and broadened the types of problem where simulation can

be applied. M. Brennan and E. Schwartz [4] considered a finite difference methods for pricing

American options for the Black-Scholes leading to one dimensional parabolic partial differential
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inequality. D. Tavella and C. Randall [18] considered pricing of options using finite differences for

the space derivatives and a slightly stabilized Crank Nicolson method for the time derivative.

The comparative study of finite difference method and Monte Carlo method for pricing Euro-

pean option was considered by [8]. Some numerical methods for options valuation was considered

by [16]. Later C. R. Nwozo and S. E. Fadugba [15] considered Monte Carlo method for pricing some

path dependent options. The effect of volatility on binomial model for the valuation of American

options was considered by [7].

A. Brick [5] had shown that geometric (exponential) Brownian motion could indeed be justified

as the rational expectations equilibrium in a market with homogeneous agents. After F. Black and

M. Scholes [1], a significant plateau has been reached by many authors in the modelling of stock

price dynamics. J. Hull [12] and E. Stein et al [17] among others followed the traditional approach

to pricing options on stocks with stochastic volatility, which start by specifying the joint process for

the stock price and its volatility risk. Their models are typically calibrated to the prices of a few

options or estimated from the time series of stock prices.

In this paper we shall consider only the Matlab implementation and the comparative results

analysis of binomial model, Crank Nicolson method and Monte Carlo method for European options.

1.1 The Black Scholes Equation

Speaking of the continuous-time model to price stock options, few can ignore the fundamental

contribution that F. Black and M. Scholes [1] made in the early 1970s. They developed their Euro-

pean option pricing model under the assumption of the lognormal dynamics of derivatives. In its

simplest form, the Black-Scholes (Merton) model equation is a linear partial differential equation

with variable coefficient.

1.1.1 Assumptions

The assumptions used to derive the Black-Scholes partial differential equation are as follows:

• The stock price follows the geometric Brownian motion with µ and σ constants.

• The short selling of securities with full use of proceeds is permitted.

• There are no transaction costs or taxes; all securities are perfectly divisible.

• The underlying stock does not pay dividends.

• There are no arbitrage opportunities. That is, it is not possible to make risk free investments

with a return greater than the risk free rate.

• The underlying asset trading is continuous and the change of its price is continuous.

• The risk-free rate of interest, r, is constant and the same for all maturities.

• Fractional shares of the underlying asset may be traded.
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• The asset price follows a lognormal random walk.

In the sequel, we shall present the derivation of Black-Scholes model using a no-arbitrage ap-

proach.

1.1.2 Derivation of Black-Scholes Model

With these assumptions, one can begin to consider the value of a call or a put option. In this

paper we will use f(S, t) to denote the value of the option in order to emphasize that the analysis

is independent of the form of the financial asset under consideration. As long as the value of the

asset depends only on S and t. To understand the form that f(S, t) will take, it is necessary to use

a result from stochastic calculus known as Itô’s Lemma. We consider the equation of a stock price

dSt = µStdt+ σStdWt

The above equation can be written as

dS(t) = µS(t)dt+ σS(t)dW (t) (1.3)

where µ is the rate of return, σ is the volatility and W follows a Wiener process on a filtered

probability space (Ω,B, µ,F(B)) in which filtration F(B) = {Bt : t ≥ 0}, where Bt is the sigma-

algebra generated by {St : 0 ≤ t ≤ T}. Assuming that f = f(S, t) ∈ C2,1(R, [0, T ]), then from Itô’s

Lemma we have,

df =

(
µS

∂f

∂S
+
∂f

∂t
+

1

2
S2σ2 ∂

2f

∂S2

)
dt+ σS

∂f

∂S
dW (1.4)

The Wiener process underlying f and S are the same and can be eliminated by choosing an

appropriate portfolio of the stock and derivative. We choose a portfolio of

−1 : derivative

+
∂f

∂S
: shares

The holder is short of one derivative and long an amount ∂f
∂S of shares. Now we define θ as the

value of the portfolio and we have

θ = −f + S
∂f

∂S
(1.5)

The change dθ in the value of the portfolio in the time interval dt is given by

dθ = −df +
∂f

∂S
dS (1.6)

Substituting (1.4) into (1.6), we get

dθ = −
[(
µS

∂f

∂S
+
∂f

∂t
+

1

2
S2σ2 ∂

2f

∂S2

)
dt+ σS

∂f

∂S
dW

]
+
∂f

∂S
dS (1.7)

Also substituting equation (1.3) into (1.7), yields

dθ = −µS ∂f
∂S

dt− ∂f

∂t
dt− 1

2
S2σ2 ∂

2f

∂S2
dt− σS ∂f

∂S
dW + µS

∂f

∂S
dt+ σS

∂f

∂S
dW

= −∂f
∂t
dt− 1

2
S2σ2 ∂

2f

∂S2
dt

68                                              Communications in Applied Sciences



dθ = −
[
∂f

∂t
+

1

2
S2σ2 ∂

2f

∂S2

]
dt (1.8)

The portfolio is now risk-less due to elimination of the dW term. It must then earn a return

similar to other short term risk-free securities such as bank account. Therefore

dθ = rθdt (1.9)

where r is the risk-free interest rate, substituting (1.5) and (1.8) into (1.9), we obtain

−
(
∂f

∂t
+

1

2
S2σ2 ∂

2f

∂S2

)
dt = r

(
−f + S

∂f

∂S

)
dt(

−∂f
∂t
− 1

2
S2σ2 ∂

2f

∂S2

)
dt =

(
−rf + rS

∂f

∂S

)
dt

−∂f
∂t
− 1

2
S2σ2 ∂

2f

∂S2
= −rf + rS

∂f

∂S

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
− rf = 0 (1.10)

(1.10) is called the Black-Scholes partial differential equation.

Solving the partial differential equation above gives an analytical formula for pricing the Euro-

pean style options. These options can only be exercised at the expiration date.

Lemma 1.1 With the Black Scholes assumptions, where the expectation E∗ is taken with respect to

the so-called risk neutral probability p∗ (equivalent to p)and under which dSt = St(rdt+ σtdWt), Wt

being a wiener process under p∗ and F which is called natural of Wt. Since St is a markov process,

it can be shown that the option’s price ft is a function of St and t, i.e. there exists a two variable

function called the pricing function such that ft = f(St, t) it is possible to prove that the option’s

price at time zero is given by

ft = exp

(∫ T

0

r(s)ds

)
E∗(f0(ST )|F0) (1.11)

1.1.3 Black-Scholes Pricing Formula

The major breakthrough in the pricing of options is that Black-Scholes obtained the closed form

formula for European options. Calling f(S, t) the price of an option with maturity T and payoff

function f0 and assuming that r, and σ > 0 are constants, then the Black Scholes formula

f(S, t) = e−rTE∗
(
f0

(
SerT eWT−W0 − σ2

2
T

))
(1.12)

and since under p∗, WT −W0 is a centered Gaussian distribution with variance T

f(S, t) =
1√
2π
e−rT

∫
R

f0

(
Se(r−0.5σ

2)T+σx
√
T
)
e−

x2

2 dx (1.13)

when the option is a vanilla European option where we shall denote the price of the call option by

CE and the price of the put by PE , a more explicit formula can be deduced from (1.11) Take for

example a call,

CE(S, t) =
1√
2π

∫ d2

−∞
(Se

−σ2T
2 −σx

√
T −Ke−rT )e−

x2

2 dx (1.14)

69                           Communications in Applied Sciences



where,

d1 =
ln( SK ) + (r + σ2

2 )T

σ
√
T

(1.15)

d2 =
ln( SK ) + (r − σ2

2 )T

σ
√
T

= d1 − σ
√
T (1.16)

and the Gaussian

N(d) =
1√
2π

∫ d

−∞
e

−x2
2 dx (1.17)

Introducing the upper tail of (1.17), using (1.15), (1.16) and (1.17), we obtain the Black-Scholes

formula for the prices at time zero of the European call option and the European put option on a

non dividend paying stock respectively

CE = SN(d1)−Ke−rTN(d2) (1.18)

and

PE = Ke−rTN(−d2)− SN(−d1) (1.19)

We may extend the Black-Scholes analytic formula to price options on a dividend paying stock

as follows,

Let λ denote the constant continuous dividend yield which is known, then the geometric Brownian

motion model in (1.3) becomes

dS = S(µ− λ)dt+ SσdW (1.20)

and the modified partial differential equation is given by

∂c

∂t
+ (r − λ)S

∂c

∂S
+
σ2S2

2

∂2c

∂S2
− rc = 0 (1.21)

Solving (1.21) by applying the same method, then the European call option for a dividend paying

stock is given by

CE = Se−λTN(d̂1)−Ke−rTN(d̂2) (1.22)

and the European put option is

PE = Ke−rTN(−d̂2)− Se−λTN(−d̂1) (1.23)

where

d̂1 =
ln( SK ) + (r − λ+ σ2

2 )τ

σ
√
τ

d̂2 =
ln( SK ) + (r − λ− σ2

2 )τ

σ
√
τ

= d̂1 − σ
√
τ

Theorem 1.2 When σ and r are constant, then the price of the call is given by

CE = Se−λTN(d1)−Ke−rTN(d2)

and the price of the put is given by

PE = Ke−rTN(−d2)− Se−λTN(−d1),
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where

d1 =
ln( SK ) + (r + σ2

2 )T

σ
√
T

d2 =
ln( SK ) + (r − σ2

2 )T

σ
√
T

and N is given by

N(d) =
1√
2π

∫ d

−∞
e

−x2
2 dx

Lemma 1.3 If r is a function of time, then d1 and d2 become

d1 =
ln( SK ) +

∫ T
t
r(τ)dτ + σ2

2 (T − t)
σ
√
T − t

(1.24)

and

d2 =
ln( SK ) +

∫ T
t
r(τ)dτ − σ2

2 (T − t)
σ
√
T − t

(1.25)

respectively.

1.2 Boundary Conditions for European Call and Put Options

The boundary conditions for European call and put options are given below.

1.2.1 European Call Option

The boundary conditions for a European call option are given by

C(S, T ) = max(S −K, 0), S > 0 (1.26)

C(0, t) = 0, t > 0 (1.27)

C(S, t) ≈ S −Ke−r(T−t), as S →∞, t > 0 (1.28)

1.2.2 European Put Option

The boundary conditions for a European call option are given by

P (S, T ) = max(K − S, 0), S > 0 (1.29)

P (0, t) = Ke−r(T−t), t > 0 (1.30)

P (S, t)→ 0, as S →∞, t > 0 (1.31)
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1.3 Factors Affecting Option Value

The fundamental direct determinants of option value are the current stock price S0, the interest

rate r, the strike price or exercise price K, the expiration date T , the stock price volatility σ and

the dividend λ expected during the life of the option. It is also important to consider whether the

option is an American or European style option. These factors affecting an option are summarized

in the Table 1.1 for both the call and put options.

Table 1.1 A Summary of the General Effect of the Six Variables

Factors Call Option Put Option

Strike price, K Decrease Increase

Current stock price, S0 Increase Decrease

Interest rate, r Increase Decrease

Expiration date, T Increase Increase

Volatility, σ Increase Increase

Dividend, λ Decrease Increase

2 Some Numerical Methods for European Options

Valuation

This section presents the procedures for the implementation of binomial model, Crank Nicolson

method and Monte Carlo method for the valuation of European options as follows;

2.1 Binomial Model

The binomial model breaks down the time to expiration into potentially a very large number

of time intervals, or steps. A tree of stock prices is initially produced working forward from the

present to expiration.

2.1.1 Procedures for the Implementation of Binomial Model

When stock price movements are governed by a multi-step binomial tree, we can treat each

binomial step separately. The multi-step binomial tree can be used for the American and European

style options.

Like the Black-Scholes model, the CRR formula in [9] can be used in the pricing of European

style options and can easily be implemented in Matlab. To overcome this problem, we use a dif-

ferent multi-period binomial model for the American style options on both the dividend and non

dividend paying stocks.
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The no-arbitrage arguments are used and no assumptions are required about the probabilities

of up and down movements in the stock price at each node. We now explain the procedures for the

implementation of the multi-period binomial model.

At time zero, the stock price S is known, at time δt, there are two possible stock prices Su and

Sd, at time 2δt, there are three possible stock prices Su2, Sud and Sd2 and so on. In general, at

time iδt where 0 ≤ i ≤ N , (i+ 1) stock price are considered, given by

SujdN−j , for j = 0, 1, 2, ..., N (2.1)

where N is the total number of movements and j is the total number of up movements. The multi-

period binomial model can reflect numerous stock price outcomes if there are numerous periods.

Fortunately. the binomial option pricing model is based on recombining trees, otherwise the com-

putational burden quickly become overwhelming as the number of moves in the tree is increased.

Options are evaluated by starting at the end of the tree at time T and working backward. We

know the worth of a call and put at time T is

max(ST −K, 0)

max(K − ST , 0)

}
(2.2)

respectively. Because we are assuming the risk neutral world, the value at each node at time

(T − δt) can be calculated as the expected value at time T discounted at rate r for a time period δt.

similarly, the value at each node at time (2T − δt) can be calculated as the expected value at time

(T − δt) discounted for a time period δt at rate r, and so on. By working back through all the nodes,

we are able to obtain the value of the option at time zero.

Suppose that the life of an European option on a non-dividend paying stock is divided into N

subintervals of length δt. Denote the jth node at time iδt as the (i, j) node, where 0 ≤ i ≤ N and

0 ≤ j ≤ i. Define fi,j as the value of the option at the (i, j) node. The stock price at the (i, j) node is

SujdN−j . Then, the respective European call and put can be expressed as

fN,j = max(SujdN−j −K, 0) (2.3)

fN,j = max(K − SujdN−j , 0), for j = 0, 1, 2, ..., N (2.4)

There is a probability p of moving from the (i, j) node at time iδt to the (i+ 1, j+ 1) node at time

(i + 1)δt and a probability (1 − p) of moving from the (i, j) node at the iδt to the (i + 1, j) node at

time (i+ 1)δt. Then the neutral valuation is

fi,j = e−rδt [pfi+1,j+1 + (1− p)fi+1,j ] (2.5)

and 0 ≤ i ≤ N − 1, 0 ≤ j ≤ i

2.2 Crank Nicolson Method

The Crank Nicolson finite difference method is the average of the implicit and explicit methods.
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We take the average of the two methods to get

fn+1,m − fn,m
δt

+
rmδS

4δS
[fn+1,m+1 − fn+1,m−1 + fn,m+1 − fn,m−1] +

σ2m2δS2

4δS
[fn,m−1 − 2fn,m + fn+1,m−1 − 2fn+1,mfn+1,m+1]

=
1

2
[rfn,m + rfn+1,m] (2.6)

Re-arranging (2.6), we get[
rmδt

4
− σ2m2δt

4

]
fn,m−1 +

[
1 +

rδt

2
+
σ2m2δt

2

]
fn,m

+

[
−σ

2m2δt

4
− rmδt

4

]
fn,m+1 =

[
σ2m2δt

4
− rmδt

4

]
fn+1,m−1

+

[
1− rδt

2
− σ2m2δt

2

]
fn+1,m +

[
rmδt

4
− σ2m2δt

4

]
fn+1,m+1 (2.7)

and we simplify to get

γ1mfn,m−1 + γ2mfn,m + γ3mfn,m+1

= ρ1mfn+1,m+1 + ρ2mfn+1,m + ρ3mfn+1,m+1 (2.8)

for n = 0, 1, ..., N − 1 and m = 1, 2, ...,M − 1 [10]. Then the parameters γkm and ρkm for k = 1, 2, 3

are given by

γ1m =
rmδt

4
− σ2m2δt

4
,

γ2m = 1 +
rδt

2
+
σ2m2δt

2
,

γ3m = −σ
2m2δt

4
− rmδt

4
,

ρ1m =
σ2m2δt

4
− rmδt

4
,

ρ2m = 1− rδt

2
− σ2m2δt

2
,

ρ3m =
rmδt

4
+
σ2m2δt

4
(2.9)

We express the system of equations in (2.8) as

Cfn = Dfn+1

This results into a tridiagonal system given by

γ20 γ30 0 . . . 0 0 0

γ11 γ21 γ31 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . γ1M−1 γ2M−1 γ3M−1

0 0 0 . . . 0 γ1M γ2M





fn,0

fn,1
...

fn,M−1

fn,M


=
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ρ20 ρ30 0 . . . 0 0 0

ρ11 ρ21 ρ31 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . ρ1M−1 ρ2M−1 ρ3M−1

0 0 0 . . . 0 ρ1M ρ2M





fn+1,0

fn+1,1

...

fn+1,M−1

fn+1,M


(2.10)

The elements of vector fn+1 are known at maturity time T and we express the system as fn =

C−1Dfn+1. By repeatedly iterating from time T to zero, we obtain the value of f as the price of the

option. The diagonal entries of matrix C is

γ2m = 1 +
rδt

2
+
σ2m2δt

2
(2.11)

are always positive and thus the diagonal elements are non zero. Therefore the matrix is non

singular as the diagonal entries are non zero.

The boundary conditions and (2.8) result in some entry changes in the tridiagonal matrices C

and D. For the matrix C, γ20, γ2M = 1 and γ30, γ1M = 0. For the matrix D, ρ20, ρ2M = 1 and

ρ30, ρ1M = 0. Crank Nicolson method has a leading error of order (δt2, δS2) [14].

2.2.1 Procedures for the Implementation of Crank Nicolson Method

The reason that Crank Nicolson finite difference method is a popular choice for pricing options

is that all options will satisfy the Black-Scholes partial differential equation (1.10) or appropriate

variants of it. The difference between each option contract is in determining the boundary condi-

tions that it satisfies. Crank Nicolson method can be applied to American options. To illustrate

the finite difference method in practice, we will now price a European put option using the Crank

Nicolson method. We first define the domain discretization in the underlying price of the asset S

and the time t as follows:

• Asset value Discretization: 0, δS, 2δS, 3δS, ...,MδS, where MδS = Smax

• Time Discretization: 0, δt, 2δt, 3δt..., Nδt, where Nδt = T

• The Price of the Option: fn,m = f(nδt,mδS), n = 0, 1, 2, 3, ..., Nand m = 0, 1, 2, 3, ...,M

Smax is a maximum value for the underlying asset price, S that we must choose sufficiently large.

The boundary conditions for European put are:

• ft,S = max(K − S)

• ft,0 = Ke−r(T − t)

• ft,Smax = 0

Changing these into mesh notation, we have
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• fN,m = max(K −mδS, 0),m = 0, 1, 2, 3, ...,M

• fn,0 = Ke−r(N−n)δt, n = 0, 1, 2, 3, ..., N

• fn,M = 0, n = 0, 1, 2, 3, ..., N

from (2.8), Crank Nicolson method can be expressed as

Cfn = Dfn+1 (2.12)

The above equation (2.12) resulting into tridiagonal matrices. These matrices occupy huge amounts

of memory and its processing can consume a lot of computer time. For example, a system of n

simultaneous linear equations requires n2 matrix entries and the computing time to solve them is

proportional to n3. In our case, the matrices have very few non-zero entries. Such matrices are

called sparse as opposed to full. Matlab has facilities for exploiting the sparsity of matrices and the

potential of saving huge amounts of memory and processing time. It also has an inbuilt function

to cater for the inverse of a matrix. It is accurate and efficient as it uses the Gauss elimination

method [11]. This inbuilt function will ease our implementation of the explicit and implicit methods

in Matlab.

2.3 Monte Carlo Method

The basis of Monte Carlo simulation is the strong law of large numbers, stating that the arith-

metic mean of independent, identically distributed random variables, converges towards their

mean almost surely. Monte Carlo simulation method uses the risk valuation result. The expected

payoff in a risk neutral world is calculated using a sampling procedure

2.3.1 Principles of Theory for Monte Carlo Method

Monte Carlo methods are based on the analogy between probability and volume. The mathe-

matics of measure formalizes the intuitive notion of probability, associating an event with a set of

outcomes and defining the probability of the event to be its volume or measure relative to that of

a universe of possible outcomes. Monte Carlo uses this identity in reverse, calculating the volume

of a set by interpreting the volume as a probability. In the simplest case, this means sampling

randomly from a universe of possible outcomes and taking the fraction of random draws that fall

in a given set as an estimate of the set’s volume. The law of large numbers ensures that this esti-

mate converges to the correct value as the number of draws increases. The central limit theorem

provides information about the likely magnitude of the error in the estimate after a finite number

of draws.

The principles of theory for Monte Carlo method are as follows [9]:

• If a derivative security can be perfectly replicated through trading in other assets, then the

price of the derivative security is the cost of the replicating trading strategy.
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• Discounted asset prices are martingales under a probability measure associated with the

choice of discount factor. Prices are expectation of discounted payoffs under such martingale

measure.

• In a complete market, any payoff can be realized through a trading strategy and the martin-

gale measure associated with the discount rate is unique.

2.3.2 Procedures for the Implementation of Monte Carlo Method

The main procedures are followed when using Monte Carlo simulation.

• Simulate a path of the underlying asset under the risk neutral condition within the desired

time horizon

• Discount the payoff corresponding to the path at the risk-free interest rate. The structure of

the security in question should be adhered to

• Repeat the procedure for a high number of simulated sample path

• Average the discounted cash flows over sample paths to obtain the option’s value.

Now we consider an European option which is an example of an vanilla options that has path

dependent payoff and this makes it ideally suited for pricing using Monte Carlo approach.

Computing an European option price means computing the discounted expectation of the payoff.

This suggests the following algorithm to determine the European option price through Monte Carlo

method.

We simulate M independent realization Xj of the final payoffs X given by

Xj
call = max(SjT − S̄t, 0)

and

Xj
put = max(S̄t − SjT , 0),

where Xj
call and Xj

put are called the payoff for the European call and put options respectively. The

discretely monitored European call(put) option has the estimated value in the jth path given by

Cjcall = e−rT max(SjT − S̄t, 0) (2.13)

and

Cjput = e−rT max(S̄t − SjT , 0) (2.14)

respectively, where SjT and S̄t are called stock price at maturity time T and strike price respec-

tively and this strike price is either given by arithmetic average or geometric average [15]. This is

repeated for j = 1, 2, ...,M , where M denotes the number of trials. These M simulations are the
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possible paths that a stock price can have at maturity time T . The final estimated call option value

is

Ccall =
1

M

M∑
j=1

Cjcall =
1

M

M∑
j=1

e−rT max(SjT − S̄t, 0) (2.15)

and corresponding put option value is given by

Cput =
1

M

M∑
j=1

Cjput =
1

M

M∑
j=1

e−rT max(S̄t − SjT , 0) (2.16)

The variance of the estimate is computed for European call and put option respectively by

Ŝ2 =
1

M − 1

M∑
j=1

(Cjcall − Ccall)
2 (2.17)

Ŝ2 =
1

M − 1

M∑
j=1

(Cjput − Cput)2 (2.18)

For a sufficiently large value of M , the distribution for European call

(Ccall − C)√
Ŝ2

M

and for put option
(Cput − C)√

Ŝ2

M

where C is the time call value, tends to the standard normal distribution. Note that the standard

deviation of Ccall and Cput is equal to Ŝ√
M

and so the confidence limits of estimation can be reduced

by increasing the number of simulation runs M . The appearance of M as the factor 1√
M

implies

that the reduction of the standard deviation by a factor of 10 will require an increase of the number

of simulation runs by 100 times.

The algorithm above can easily be implemented in Matlab to estimate the price of European cal-

l(put) options.

3 Numerical Examples and Results

This section presents some numerical examples and results generated as follows:

Example 1

We consider the accuracy and the convergence of Binomial model, Crank Nicolson method and

Monte Carlo method with relation to the Black-Scholes value of the option. We price a European

put option on non-dividend paying stock with the following parameters:

K = 60, r = 5%, σ = 25%, T = 3

The results generated from the three methods are presented in the Tables 1 and 2 below using

MATLAB.
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Example 2

We consider the performance of the three numerical methods against the ‘true’ Black-Scholes

price for a vanilla option with the following parameters:

S = 60, 70, 80, 90, 100,K = 90, r = 4%, σ = 0.2, 0.4, 0.6, 0.8, T = 2

The results obtained are shown in the Table 3, 4,5 and 6 below.

3.1 Table of Results

Table 1: The Accuracy of Binomial Model, Crank Nicolson Method

and Monte Carlo Method with relation to the ‘True’ Black-Scholes

Values for European Call Option

S Black-Scholes Binomial Crank Nicolson Monte Carlo

Values Model Method Method

10 0.1372 0.1372 0.1372 0.1382

20 1.3580 1.3580 1.3470 1.3579

30 4.1503 4.1538 4.0855 4.1430

40 8.3687 8.3722 8.1614 8.3305

50 13.7407 13.7439 13.2598 13.7503

60 20.2665 20.0220 19.0979 20.0072

70 26.9975 26.9969 25.4517 27.0079

80 34.5287 34.5384 32.1512 34.5043

90 42.4935 42.5021 39.0694 42.4557

100 50.8025 50.8121 46.1115 50.8121
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Table 2: The Accuracy of Binomial Model, Crank Nicolson Method

and Monte Carlo Method with relation to the ‘True’ Black-Scholes

Values for European Put Option

S Black-Scholes Binomial Crank Nicolson Monte Carlo

Values Model Method Method

10 50.3868 50.3868 48.1807 50.3887

20 41.6076 41.6075 41.2856 41.6062

30 34.3998 34.4033 34.3108 34.4078

40 28.6128 28.6217 28.5147 28.6170

50 23.9903 23.9935 23.9449 23.9816

60 20.2665 20.2715 20.1941 20.2615

70 17.2470 17.2465 17.1252 17.2496

80 14.7783 14.7879 14.5832 14.7759

90 12.7430 12.7526 12.4490 12.7469

100 11.0520 11.0617 10.4313 11.0510

Table 3: The Performance of Binomial Model, Crank Nicolson Method

and Monte Carlo Method against the ‘True’ Black-Scholes Values for

European Put Option with σ = 0.20

S Black-Scholes Binomial Crank Nicolson Monte Carlo

Values Model Method Method

60 24.3107 24.3119 24.3100 24.3162

70 16.6658 16.6690 16.6611 16.6759

80 10.7916 10.7949 10.7843 10.7881

90 6.6567 6.6591 6.6491 6.6559

100 3.9483 3.9504 3.9420 3.9512

Table 4: The Performance of Binomial Model, Crank Nicolson Method

and Monte Carlo Method against the ‘True’ Black-Scholes Values for

European Put Option with σ = 0.40

S Black-Scholes Binomial Crank Nicolson Monte Carlo

Values Model Method Method

60 29.9441 29.9420 29.9392 29.9379

70 24.3389 24.3331 24.3297 24.3289

80 19.7389 19.7442 19.7210 19.7466

90 16.0002 15.9926 15.9663 16.0105

100 12.9789 12.9641 12.9181 12.9786
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Table 5: The Performance of Binomial Model, Crank Nicolson Method

and Monte Carlo Method against the ‘True’ Black-Scholes Values for

European Put Option with σ = 0.60

S Black-Scholes Binomial Crank Nicolson Monte Carlo

Values Model Method Method

60 36.6412 36.6387 36.4648 36.6560

70 32.1729 32.1697 31.8663 32.1804

80 28.3615 28.3396 27.8683 28.3693

90 25.0985 25.0982 24.3573 25.1079

100 22.2935 22.2713 21.2386 22.3020

Table 6: The Performance of Binomial Model, Crank Nicolson Method

and Monte Carlo Method against the ‘True’ Black-Scholes Values for

European Put Option with σ = 0.80

S Black-Scholes Binomial Crank Nicolson Monte Carlo

Values Model Method Method

60 43.3059 43.3029 41.9470 43.3063

70 39.6653 39.6362 37.8850 39.6572

80 36.4889 36.4347 34.1409 36.5031

90 33.6965 33.6842 30.6548 33.6971

100 31.2252 31.2103 27.3765 31.2259

3.2 Discussion of Results

Tables 1 and 2 show the accuracy of binomial model, Crank Nicolson method and Monte Carlo

method with relation to the ‘true’ Black-Scholes values for European call and put options respec-

tively. The Tables show the variation of the option price with the stock price, S. The results

demonstrate that binomial model and Monte Carlo method perform well, are mutually consistent,

more accurate than Crank Nicolson method and agree with the Black-Scholes values. From Tables

3, 4, 5 and 6, we can see that binomial model is more accurate than its counterparts. Also the high-

er the volatility, the higher the values of the three methods under consideration. Hence binomial

model and Monte Carlo method work very well for the valuation of European options.

4 Conclusion

In this paper we consider three numerical methods namely: binomial model, Crank Nicolson

method and Monte Carlo method. Each of the numerical methods for vanilla option valuation has

its own advantages and disadvantages of use as outlined below.
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Advantages of Binomial Model

• It is very flexible in pricing options.

• This method is both computationally efficient and accurate.

• It is very simple but powerful technique that can be used to solve many complex option pricing

problem.

• It can be used to accurately price American style options than the Black-Scholes model as it

takes into consideration the possibilities of early exercise and other factors like dividends.

Disadvantages of Binomial Model

• It is very slow.

• This method is not adequate to deal with path dependent options.

Advantages of Crank Nicolson Finite Difference Methods

• They are fairly robust.

• Finite difference methods are a good choice for solving partial differential equations over a

complex domains.

• They are very flexible in handling different processes for the underlying state variables.

• They can be used to accurately price American style options where there is possibilities of

early exercise.

Disadvantages of Finite Difference Methods

• These methods can not be used in high dimensions.

• Finite difference methods are somewhat problematic for path dependent options.

• Finite difference methods are a little harder to code than Monte Carlo method and the bino-

mial model, and can be prone to instability (in the case of an explicit method).

Advantages of Monte Carlo Method

• Easy computation.

• It accommodates complex payoffs and stochastic processes.

• It is flexible in handling varying and even high dimensional financial problems.

• It provides standard error for the estimates that it makes.

• It is often used as the benchmark valuation technique for many complex options.
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• It is quite easy to implement and can be used without too much difficulty to value a large

range of European style exotics.

Disadvantages of Monte Carlo Method

• It is very computationally expensive in terms of time and computing resources.

• Early exercise is problematic for simulation methods.

From the above Tables, we can see the effect of volatility on the valuation of European put

options that increase in volatility will lead to increase in the price of the option and among the

methods considered in this paper, we conclude that binomial model and Monte Carlo method per-

form better and more accurate than Crank Nicolson method when pricing European options.
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